Globally, Campylobacter is a significant contributor to gastroenteritis. Efficient pathogens are qualified by their virulence power, resistance to antibiotics and epidemic spread. However, the correlation between antimicrobial resistance (AR) and the pathogenicity power of pathogens is complex and poorly understood. In this study, we aimed to investigate genes encoding virulence and AR mechanisms in 177 Campylobacter isolates collected from layer hens and eggs in Tunisia and to assess associations between AR and virulence characteristics. Virulotyping was determined by searching 13 virulence genes and AR-encoding genes were investigated by PCR and MAMA-PCR. The following genes were detected in C. jejuni and C. coli isolates: tet(O) (100%/100%), blaOXA-61 (18.82%/6.25%), and cmeB (100%/100%). All quinolone-resistant isolates harbored the Thr-86-Ile substitution in GyrA. Both the A2074C and A2075G mutations in 23S rRNA were found in all erythromycin-resistant isolates; however, the erm(B) gene was detected in 48.38% and 64.15% of the C. jejuni and C. coli isolates, respectively. The machine learning algorithm Random Forest was used to determine the association of virulence genes with AR phenotypes. This analysis showed that C. jejuni virulotypes with gene clusters encompassing the racR, ceuE, virB11, and pldA genes were strongly associated with the majority of phenotypic resistance. Our findings showed high rates of AR and virulence genes among poultry Campylobacter, which is a cause of concern to human health. In addition, the correlations of specific virulence genes with AR phenotypes were established by statistical analysis.
Snake venom contains a number of active molecules that have been shown to possess high anti-tumor activities; disintegrins are an excellent example among these. Their ability to interact and bind with integrins suggests that they could be very valuable molecules for the development of new cancer therapeutic approaches. However, in the absence of a clear Lysine-Threonine-Serine (KTS) Disintegrins Integrin interaction model, the exact compound features behind it are still unknown. In this study, we investigated the structural characteristics of three KTS-disintegrins and the interaction mechanisms with the α1β1 integrin receptor using in silico bioinformatics approaches. Normal mode analysis showed that the flexibility of the KTSR motif and the C-terminal region play a key role and influence the KTS-Disintegrin-integrin interaction. Protein-protein docking also suggested that the interaction involving the KTSR motif is highly dependent on the residue following K21, S23 and R24. These findings contribute to a better understanding of the KTS-Disintegrin-Integrin structural differences and their interactions with α1β1 receptors, which could improve the selection process of the best active molecules for antitumor therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.