Septoria leaf blotch is mainly controlled by fungicides. Zymoseptoria tritici, which is responsible for this disease, displays strong adaptive capacity to fungicide challenge. It developed resistance to most fungicides due to target site modifications. Recently, isolated strains showed cross-resistance to fungicides with unrelated modes of action, suggesting a resistance mechanism known as multidrug resistance (MDR). We show enhanced prochloraz efflux, sensitive to the modulators amitryptiline and chlorpromazine, for two Z. tritici strains, displaying an MDR phenotype in addition to the genotypes CYP51(I381V Y461H) or CYP51(I381V ΔY459/) (G460) , respectively, hereafter named MDR6 and MDR7. Efflux was also inhibited by verapamil in the MDR7 strain. RNA sequencing lead to the identification of several transporter genes overexpressed in both MDR strains. The expression of the MgMFS1 gene was the strongest and constitutively high in MDR field strains. Its inactivation in the MDR6 strain abolished resistance to fungicides with different modes of action supporting its involvement in MDR in Z. tritici. A 519 bp insert in the MgMFS1 promoter was detected in half of the tested MDR field strains, but absent from sensitive field strains, suggesting that the insert is correlated with the observed MDR phenotype. Besides MgMfs1, other transporters and mutations may be involved in MDR in Z. tritici.
Disease control through fungicides remains an important means to protect crops from fungal diseases and to secure the harvest. Plant-pathogenic fungi, especially Zymoseptoria tritici, have developed resistance against most currently used active ingredients, reducing or abolishing their efficacy. While target site modification is the most common resistance mechanism against single modes of action, active efflux of multiple drugs is an emerging phenomenon in fungal populations reducing additionally fungicides’ efficacy in multidrug-resistant strains. We have investigated the mutations responsible for increased drug efflux in Z. tritici field strains. Our study reveals that three different insertions of repeated elements in the same promoter lead to multidrug resistance in Z. tritici. The target gene encodes the membrane transporter MFS1 responsible for drug efflux, with the promoter inserts inducing its overexpression. These results underline the plasticity of repeated elements leading to fungicide resistance in Z. tritici.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.