Our aim is to analyze the link between optimism and risk aversion in a subjective expected utility setting and to estimate the average level of optimism when weighted by risk tolerance. This quantity is of particular importance since it characterizes the consensus belief in risk-taking situations with heterogeneous beliefs. Its estimation leads to a nontrivial statistical problem. We start from a large lottery survey (1536 individuals). We assume that individuals have true unobservable characteristics and that their answers in the survey are noisy realizations of these characteristics. We adopt a Bayesian approach for the statistical analysis of this problem and use an hybrid MCMC approximation method to numerically estimate the distributions of the unobservable characteristics. We obtain that individuals are on average pessimistic and that pessimism and risk tolerance are positively correlated. As a consequence, we conclude that the consensus belief is biased towards pessimism.
Our aim is to analyze the link between optimism and risk aversion in a subjective expected utility setting and to estimate the average level of optimism when weighted by risk tolerance. This quantity is of particular importance since it characterizes the consensus belief in risk-taking situations with heterogeneous beliefs. Its estimation leads to a nontrivial statistical problem. We start from a large lottery survey (1536 individuals). We assume that individuals have true unobservable characteristics and that their answers in the survey are noisy realizations of these characteristics. We adopt a Bayesian approach for the statistical analysis of this problem and use an hybrid MCMC approximation method to numerically estimate the distributions of the unobservable characteristics. We obtain that individuals are on average pessimistic and that pessimism and risk tolerance are positively correlated. As a consequence, we conclude that the consensus belief is biased towards pessimism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.