The hydrogen evolution reaction (HER) is the core of electrocatalysis and plays a crucial role in water splitting to obtain hydrogen. It has been inevitable to develop metal-free catalysts in terms of sustainability, the environment, and economic feasibility. Carbon-based materials are called metal-free electrocatalysts and are regarded as one of the most promising candidates due to their abundant source, but they often show poor activity. The strategic aim of this study is to convert commercial carbon fiber into heteroatom-doped graphene-like surfaced fibers via an eco-friendly and fast intercalation/semiexfoliation mechanism called Yucel's method. Furthermore, Xray photoelectron spectroscopy (XPS) verified that the intercalation has successfully taken place and that the heteroatoms (S, O) are connected to the graphene-like structure by covalent bonds. The catalysts with 1 M H 2 SO 4 showed superior HER performance compared to bare CF.
The single-phase multi-principal-component CoFeMnTiVZr alloy was obtained by rapid solidification and examined by a combination of electrochemical methods and gas–solid reactions.
Ferrocene (Fc)-containing monomers were synthesized from ferrocene carboxylic acid and 2-hydroxyethyl acrylate as precursors, and the synthesized monomer was polymerized with ethyl 2-bromoisobutyrate by the atom transfer radical polymerization (ATRP)...
Due to growing environmental concerns and increasing energy needs, hydrogen, one of the key options as a future energy carrier, has lately gained more interest. In this study, we have...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.