(1) Background: Intraoral optical scanning (IOS) has gained increased importance in prosthodontics. The aim of this in vitro study was to analyze the IOS accuracy for treatment with full crowns, considering possible influencing factors. (2) Methods: Two tooth morphologies, each with four different finish-line designs for tooth preparation and epi- or supragingival locations, were digitally designed, 3D-printed, and post-processed for 16 sample abutment teeth. Specimens were digitized using a laboratory scanner to generate reference STLs (Standard Tessellation Language), and were secondary-scanned with two IOS systems five times each in a complete-arch model scenario (Trios 3 Pod, Primescan AC). For accuracy, a best-fit algorithm (Final Surface) was used to analyze deviations of the abutment teeth based on 160 IOS-STLs compared to the reference STLs (16 preparations × 2 IOS-systems × 5 scans per tooth). (3) Results: Analysis revealed homogenous findings with high accuracy for intra- and inter-group comparisons for both IOS systems, with mean values of 80% quantiles from 20 ± 2 μm to 50 ± 5 μm. Supragingival finishing lines demonstrated significantly higher accuracy than epigingival margins when comparing each preparation (p < 0.05), whereas tangential preparations exhibited similar results independent of the gingival location. Morphology of anterior versus posterior teeth showed slightly better results in favor of molars in combination with shoulder preparations only. (4) Conclusion: The clinical challenge for the treatment with full crowns following digital impressions is the location of the prospective restoration margin related to the distance to the gingiva. However, the overall accuracy for all abutment teeth was very high; thus, the factors tested are unlikely to have a strong clinical impact.
(1) Background: The rapid pace of digital development in everyday life is also reflected in dentistry, including the emergence of the first systems based on artificial intelligence (AI). This systematic review focused on the recent scientific literature and provides an overview of the application of AI in the dental discipline of prosthodontics. (2) Method: According to a modified PICO-strategy, an electronic (MEDLINE, EMBASE, CENTRAL) and manual search up to 30 June 2021 was carried out for the literature published in the last five years reporting the use of AI in the field of prosthodontics. (3) Results: 560 titles were screened, of which 30 abstracts and 16 full texts were selected for further review. Seven studies met the inclusion criteria and were analyzed. Most of the identified studies reported the training and application of an AI system (n = 6) or explored the function of an intrinsic AI system in a CAD software (n = 1). (4) Conclusions: While the number of included studies reporting the use of AI was relatively low, the summary of the obtained findings by the included studies represents the latest AI developments in prosthodontics demonstrating its application for automated diagnostics, as a predictive measure, and as a classification or identification tool. In the future, AI technologies will likely be used for collecting, processing, and organizing patient-related datasets to provide patient-centered, individualized dental treatment.
Objectives To explore the evidence of periodontal manifestations and treatment modalities in patients with Langerhans cell histiocytosis (LCH). Material and methods A systematic literature search was performed and the criteria for PRISMA and risk of bias assessment were applied. Human clinical studies (≥10 patients) presenting patients with LCH and periodontal findings were considered for inclusion. Results From 298 titles identified, six case series with a total of 1278 patients suffering from LCH were included. In these studies, oral symptoms were reported in a frequency ranging from 10 to 100%. Overall, in 216 patients (17%), oral symptoms were observed. Out of these patients, 49–100% demonstrated periodontal symptoms. The most common oral findings were pain, swelling, tooth loss/mobility, and bone lesions. Specific periodontal findings comprised varying frequencies of gingival ulcerations, increased pocket depths, and gingival bleeding. Treatment measures constituted of surgical curettage of bone lesions, soft tissue excision and/or tooth extractions, radiotherapy, systemic chemotherapy, or a combination of these approaches. Healing without recurrence of oral lesions was reported in most of the cases. Conclusions The available evidence on periodontal manifestations in LCH patients is heterogeneous. Several oral and periodontal findings were reported and may occur as initial symptoms and/or at later stages of the disease. Clinical relevance The dentist should be aware of possible oral involvement of systemic diseases such as LCH, and these manifestations may mimic periodontal disease.
Digital applications have changed therapy in prosthodontics. In 2017, a systematic review reported on complete digital workflows for treatment with tooth-borne or implant-supported fixed dental prostheses (FDPs). Here, we aim to update this work and summarize the recent scientific literature reporting complete digital workflows and to deduce clinical recommendations. A systematic search of PubMed/Embase using PICO criteria was performed. English-language literature consistent with the original review published between 16 September 2016 and 31 October 2022 was considered. Of the 394 titles retrieved by the search, 42 abstracts were identified, and subsequently, 16 studies were included for data extraction. A total of 440 patients with 658 restorations were analyzed. Almost two-thirds of the studies focused on implant therapy. Time efficiency was the most often defined outcome (n = 12/75%), followed by precision (n = 11/69%) and patient satisfaction (n = 5/31%). Though the amount of clinical research on digital workflows has increased within recent years, the absolute number of published trials remains low, particularly for multi-unit restorations. Current clinical evidence supports the use of complete digital workflows in implant therapy with monolithic crowns in posterior sites. Digitally fabricated implant-supported crowns can be considered at least comparable to conventional and hybrid workflows in terms of time efficiency, production costs, precision, and patient satisfaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.