Biogas, with its high carbon dioxide content (30–50 vol%), is an attractive feed for catalytic methanation with green hydrogen, and is suitable for establishing a closed carbon cycle with methane as energy carrier. The most important questions for direct biogas methanation are how the high methane content influences the methanation reaction and overall efficiency on one hand, and to what extent the methanation catalysts can be made more resistant to various sulfur-containing compounds in biogas on the other hand. Ni-based catalysts are the most favored for economic reasons. The interplay of active compounds, supports, and promoters is discussed regarding the potential for improving sulfur resistance. Several strategies are addressed and experimental studies are evaluated, to identify catalysts which might be suitable for these challenges. As several catalyst functionalities must be combined, materials with two active metals and binary oxide support seem to be the best approach to technically applicable solutions. The high methane content in biogas appears to have a measurable impact on equilibrium and therefore CO2 conversion. Depending on the initial CH4/CO2 ratio, this might lead to a product with higher methane content, and, after work-up, to a drop in-option for existing natural gas grids.
synthesis of the CO 2 in biogas aims at producing light hydrocarbons and increasing its calorific value for feeding into the grid. Fe catalysts with Mn and K as promoters are supposed to yield high amounts of light hydrocarbons. Using a Fe-Mn-K/MgO catalyst, a parameter screening and long-term experiments were carried out. The catalyst shows, within the examined range, the highest selectivity to C 2-C 4 hydrocarbons at 450°C, 8 bar(a), and a gas hourly space velocity of 350 h-1. Calcination of the catalyst resulted in a significant drop of activity and an almost complete loss of selectivity to hydrocarbons. Admixture of steam to the reactant gas lowers the tendency to carbon deposition but also promotes the water-gas shift reaction and results in lower yields of hydrocarbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.