Background: Post-stroke recovery benefits from structured, intense, challenging, and repetitive therapy. Exergames have emerged as promising to achieve sustained therapy practice and patient motivation. This study assessed the usability and effects of exergames on balance and gait. Subjects and Methods: Sixteen elderly participants were provided with the study intervention based on five newly developed exergames. The participants were required to attend 36 training sessions; lasting for 20 minutes each. Adherence, attrition and acceptance were assessed together with (1) Berg Balance Scale, (2) 7-m Timed Up and Go, (3) Short Physical Performance Battery, (4) force platform stance tests, and (5) gait analysis. Results: Thirteen participants completed the study (18.8 percent attrition), without missing a single training session (100 percent adherence). Participants showed high acceptance of the intervention. Only minor adaptations in the program were needed based on the users' feedback. No changes in center of pressure area during quiet stance on both stable and unstable surfaces and no changes of walking parameters were detected. Scores for the Berg Balance Scale (P = 0.007; r = 0.51), the 7-m Timed Up and Go (P = 0.002; r = 0.56), and the Short Physical Performance Battery (P = 0.013; r = 0.48) increased significantly with moderate to large effect sizes. Conclusion: Participants evaluated the usability of the virtual reality training intervention positively. Results indicate that the intervention improves gait-and balance-related physical performance measures in untrained elderly. The present results warrant a clinical explorative study investigating the usability and effectiveness of the exergame-based program in stroke patients.
Abstract-The instrumented Timed " Up and Go" test (iTUG) has the potential for playing an important role in providing clinically useful information regarding an individual's balance and mobility that cannot be derived from the original singleoutcome Timed "Up and Go" test protocol. The purpose of this study was to determine the reliability and validity of the iTUG using body-fixed inertial sensors in people affected by stroke. For test-retest reliability analysis, 14 individuals with stroke and 25 nondisabled elderly patients were assessed. For validity analysis, an age-matched comparison of 12 patients with stroke and 12 nondisabled controls was performed. Out of the 14 computed iTUG metrics, the majority showed excellent testretest reliability expressed by high intraclass correlation coefficients (range 0.431-0.994) together with low standard error of measurement and smallest detectable difference values. BlandAltman plots demonstrated good agreement between two repeated measurements. Significant differences between patients with stroke and nondisabled controls were found in 9 of 14 iTUG parameters analyzed. Consequently, these results warrant the future application of the inertial sensor-based iTUG for the assessment of physical deficits poststroke in longitudinal study designs.
A few games aimed at postural rehabilitation have been designed and developed to test the functionalities of the IGER system. The preliminary results of tests on normal elderly people and patients with the supervision of clinicians have shown that the IGER system indeed does feature the characteristics required to support rehabilitation at home and that it is ready for clinical pilot testing at patients' homes.
Virtual rehabilitation approaches for promoting motor recovery has attracted considerable attention in recent years. It appears to be a useful tool to provide beneficial and motivational rehabilitation conditions. Following a stroke, hemiparesis is one of the most disabling impairments and, therefore, many affected people often show substantial deficits in walking abilities. Hence, one of the major goals of stroke rehabilitation is to improve patients' gait characteristics and hence to regain their highest possible level of walking ability. Because previous studies indicate a relationship between walking and balance ability, this article proposes a stroke rehabilitation program that targets balance impairments to improve walking in stroke survivors. Most currently, available stroke rehabilitation programs lack a theory-driven, feasible template consistent with widely accepted motor learning principles and theories in rehabilitation. To address this hiatus, we explore the potential of a set of virtual reality games specifically developed for stroke rehabilitation and ordered according to an established two-dimensional motor skill classification taxonomy. We argue that the ensuing “exergame”-based rehabilitation program warrants individually tailored balance progression in a learning environment that allows variable practice and hence optimizes the recovery of walking ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.