Problem statement:The reinforcements added to an alloy lead to variation in properties. The content and size of the reinforcement influences the properties of composites. Very little research has been carried out in hybrid composites. Work on hybrid LM6 aluminium alloy metal matrix composites (MMC) with flyash and SiC has been initiated here. The effect of the four parameters, size and weight of the reinforcements on the hardness and wear loss has been studied. Approach: Artificial neural networks, from the artificial intelligence family, is a type of information processing system, based on modeling the neural system of human brain. The effect of the parameters was investigated using ANN. Central composite rotatable method of design of experiments was used to arrive at the combination and the number of specimens. The specimens were prepared using the liquid metallurgy route and tested. Pin-on-disc apparatus was used for determining wear. Rockwell hardness on C scale was determined. The data from the experiments were used for training and testing the network. Results: The accuracy in ANN prediction was appreciable with the error estimated for wear loss and hardness being less than 2%. Conclusions/Recommendations: The ANN prediction is quick and economical way of estimating the properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.