Immuno-PCR combines specific antibody-based protein detection with the sensitivity of PCR-based quantification through the use of antibody-DNA conjugates. The production of such conjugates depends on the availability of quick and efficient conjugation strategies for the two biomolecules. Here, we present an approach to produce cleavable antibody-DNA conjugates, employing the fast kinetics of the inverse electron-demand Diels-Alder reaction between tetrazine and trans-cyclooctene (TCO). Our strategy consists of three steps. First, antibodies are functionalized with chemically cleavable NHS-s-s-tetrazine. Subsequently, double-stranded DNA is functionalized with TCO by enzymatic addition of N3-dATP and coupling to trans-Cyclooctene-PEG12-Dibenzocyclooctyne (TCO-PEG12-DBCO). Finally, conjugates are quickly and efficiently obtained by mixing the functionalized antibodies and dsDNA at low molar ratios of 1:2. In addition, introduction of a chemically cleavable disulphide linker facilitates release and sensitive detection of the dsDNA after immuno-staining. We show specific and sensitive protein detection in immuno-PCR for human epidermal stem cell markers, ITGA6 and ITGB1, and the differentiation marker Transglutaminase 1 (TGM1). We anticipate that the production of chemically cleavable antibody-DNA conjugates will provide a solid basis for the development of multiplexed immuno-PCR experiments and immuno-sequencing methodologies.
Bioorthogonal reactions are widely used for the chemical modification of biomolecules. The application of vinylboronic acids (VBAs) as non‐strained, synthetically accessible and water‐soluble reaction partners in a bioorthogonal inverse electron‐demand Diels–Alder (iEDDA) reaction with 3,6‐dipyridyl‐s‐tetrazines is described. Depending on the substituents, VBA derivatives give second‐order rate constants up to 27 m −1 s−1 in aqueous environments at room temperature, which is suitable for biological labeling applications. The VBAs are shown to be biocompatible, non‐toxic, and highly stable in aqueous media and cell lysate. Furthermore, VBAs can be used orthogonally to the strain‐promoted alkyne–azide cycloaddition for protein modification, making them attractive complements to the bioorthogonal molecular toolbox.
Bioorthogonal reactions are selective transformations that are not affected by any biological functional group and are widely used for chemical modification of biomolecules. Recently, we reported that vinylboronic acids (VBAs) gave exceptionally high reaction rates in the bioorthogonal inverse electron-demand Diels–Alder (iEDDA) reaction with tetrazines bearing a boron-coordinating pyridyl moiety compared to tetrazines lacking such a substituent. In this integrated experimental and theoretical study, we show how the reaction rate of the VBA-tetrazine ligation can be accelerated by shifting the equilibrium from boronic acid to the boronate anion in the reaction mixture. Quantum chemical activation strain analyses reveal that this rate enhancement is a direct consequence of the excellent electron-donating capability of the boronate anion in which the π HOMO is pushed to a higher energy due to the net negative potential of this species. We have explored the second-order rate constants of several tetrazines containing potential VBA-coordinating hydroxyl substituents. We observed an increase in rate constants of several orders of magnitude compared to the tetrazines lacking a hydroxyl substituent. Furthermore, we find the hydroxyl-substituted tetrazines to be more selective toward VBAs than toward the commonly used bioorthogonal reactant norbornene, and more stable in aqueous environment than the previously studied tetrazines containing a pyridyl substituent.
Rhabdomyosarcomas (RMS) are mesenchyme-derived tumors and the most common childhood soft tissue sarcomas. Treatment is intense, with a nevertheless poor prognosis for high-risk patients. Discovery of new therapies would benefit from additional preclinical models. Here, we describe the generation of a collection of 19 pediatric RMS tumor organoid (tumoroid) models (success rate of 41%) comprising all major subtypes. For aggressive tumors, tumoroid models can often be established within 4-8 weeks, indicating the feasibility of personalized drug screening. Molecular, genetic, and histological characterization show that the models closely resemble the original tumors, with genetic stability over extended culture periods of up to 6 months. Importantly, drug screening reflects established sensitivities and the models can be modified by CRISPR/Cas9 with TP53 knockout in an embryonal RMS model resulting in replicative stress drug sensitivity. Tumors of mesenchymal origin can therefore be used to generate organoid models, relevant for a variety of preclinical and clinical research questions.
Bioorthogonal chemistry can be used for the selective modification of biomolecules without interfering with any other functionality that might be present. Recent developments in the field include orthogonal bioorthogonal reactions to modify multiple biomolecules simultaneously. During our research, we observed that the reaction rates for the bioorthogonal inverse-electron-demand Diels-Alder (iEDDA) reactions between nonstrained vinylboronic acids (VBAs) and dipyridyl-s-tetrazines were exceptionally higher than those between VBAs and tetrazines bearing a methyl or phenyl substituent. As VBAs are mild Lewis acids, we hypothesised that coordination of the pyridyl nitrogen atom to the boronic acid promoted tetrazine ligation. Herein, we explore the molecular basis and scope of VBA-tetrazine ligation in more detail and benefit from its unique reactivity in the simultaneous orthogonal tetrazine labelling of two proteins modified with VBA and norbornene, a widely used strained alkene. We further show that the two orthogonal iEDDA reactions can be performed in living cells by labelling the proteasome by using a nonselective probe equipped with a VBA and a subunit-selective VBA bearing a norbornene moiety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.