We have performed a full-dimensional theoretical study of vibrationally resolved photoelectron emission from the valence shell of the water molecule by using an extension of the static-exchange density functional theory that accounts for ionization as well as for vibrational motion in the symmetric stretching, antisymmetric stretching, and bending modes. At variance with previous studies performed in centrosymmetric molecules, where vibrationally resolved spectra are mostly dominated by the symmetric stretching mode, in the present case, all three modes contribute to the calculated spectra, including intermode couplings. We have found that diffraction of the ejected electron by the various atomic centers is barely visible in the ratios between vibrationally resolved photoelectron spectra corresponding to different vibrational states of the remaining H2O+ cation (the so-called v-ratios), in contrast to the prominent oscillations observed in K-shell ionization of centrosymmetric molecules, including those that only contain hydrogen atoms around the central atoms, e.g., CH4. To validate the conclusions of our work, we have carried out synchrotron radiation experiments at the SOLEIL synchrotron and determined photoelectron spectra and v-ratios for H2O in a wide range of photon energies, from threshold up to 150 eV. The agreement with the theoretical predictions is good.
We present accurate ab initio potential energy surfaces and dipole transition moments of numerous low-lying states of HCl in a large range of internuclear distances. Using these results, we computed the visible/ultra-violet absorption spectrum of HCl covering the energy range up to the first ionization potential and the absolute optical oscillator strengths for the first discrete electronic transitions. Comparison of these theoretical results is done with the available experimental and theoretical data. Finally, we present a complete peaks-attribution of the HCl electronic absorption spectrum. Our results are in good agreement with the available experimental results.
Interatomic Coulombic Decay (ICD) is a general mechanism in which an excited atom can transfer its excess energy to a neighbor which is thus ionized. ICD belongs to the family of Feshbach resonance processes, and, as such, states undergoing ICD are characterized by their energy width. In this work, we investigate the computations of ICD widths using the R-matrix method as implemented in the UKRmol package. Helium dimer is used here as a benchmark system. The results are compared with those obtained with the well established Fano-Algebraic Diagrammatic Construction method. It is shown that the R-matrix method in its present implementation provides accurate total and partial widths if the kinetic energy of the ICD electron is lower than 10 eV. Advantages and limitations of the R-matrix method on the computations of ICD widths are discussed.
We report a theoretical study of the selective vibrational excitation of a HCl molecule achieved by Raman chirped adiabatic passage (RCAP) and probed by X-ray photoelectron spectroscopy (XPS). It is demonstrated that HCl can be prepared in any vibrational level up to ν = 9 with nearly complete population inversion. We explore the effects of both the rotation of the molecule and of the temperature on the RCAP process, which is proved to be very robust. Furthermore, we emphasize that XPS spectra at the chlorine K-shell threshold show characteristic signatures of the populated vibrational level, allowing us to follow the RCAP process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.