Apoptosis is a form of programmed cell death that is essential for the efficient elimination of surplus, damaged, and transformed cells during metazoan embryonic development and adult tissue homeostasis. Situated at the interface of apoptosis initiation and execution, mitochondrial outer membrane permeabilization (MOMP) represents one of the most fundamental processes during apoptosis signal transduction. It was shown that MOMP can spatiotemporally propagate through cells, in particular in response to extrinsic apoptosis induction. Based on apparently contradictory experimental evidence, two distinct molecular mechanisms have been proposed to underlie the propagation of MOMP signals, namely a reaction-diffusion mechanism governed by anisotropies in the production of the MOMP-inducer truncated Bid (tBid), or a process that drives the spatial propagation of MOMP by sequential bursts of reactive oxygen species. We therefore generated mathematical models for both scenarios and performed in silico simulations of spatiotemporal MOMP signaling to identify which one of the two mechanisms is capable of qualitatively and quantitatively reproducing the existing data. We found that the explanatory power of each model was limited in that only a subset of experimental findings could be replicated. However, the integration of both models into a combined mathematical description of spatiotemporal tBid and reactive oxygen species signaling accurately reproduced all available experimental data and furthermore, provided robustness to spatial MOMP propagation when mitochondria are spatially separated. Our study therefore provides a theoretical framework that is sufficient to describe and mechanistically explain the spatiotemporal propagation of one of the most fundamental processes during apoptotic cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.