PurposeThere are conflicting reports regarding the function of EFEMP1 in different cancer types. In this study, we sought to evaluate the role of EFEMP1 in malignant glioma biology.Experimental DesignReal-time qRT-PCR was used to quantify EFEMP1 expression in 95 glioblastoma multiforme (GBM). Human high-grade glioma cell lines and primary cultures were engineered to express ectopic EFEMP1, a small hairpin RNA of EFEMP1, or treated with exogenous recombinant EFEMP1 protein. Following treatment, growth was assayed both in vitro and in vivo (subcutaneous (s.c.) and intracranial (i.c.) xenograft model systems).ResultsCox regression revealed that EFEMP1 is a favorable prognostic marker for patients with GBM. Over-expression of EFEMP1 eliminated tumor development and suppressed angiogenesis, cell proliferation, and VEGFA expression, while the converse was true with knock-down of endogenous EFEMP1 expression. The EFEMP1 suppression of tumor onset time was nearly restored by ectopic VEGFA expression; however, overall tumor growth rate remained suppressed. This suggested that inhibition of angiogenesis was only partly responsible for EFEMP1's impact on glioma development. In glioma cells that were treated by exogenous EFEMP1 protein or over-expressed endogenous EFEMP1, the EGFR level was reduced and AKT signaling activity attenuated. Mixing of EFEMP1 protein with cells prior to s.c. and i.c. implantations or injection of the protein around the established s.c. xenografts, both significantly suppressed tumorigenicity.ConclusionsOverall, our data reveals that EEFEMP1 suppresses glioma growth in vivo, both by modulating the tumor extracellular microenvironment and by altering critical intracellular oncogenic signaling pathways.
The pathogenic fungus Candida albicans can undergo phenotypic switching between two heritable states: white and opaque. This phenotypic plasticity facilitates its colonization in distinct host niches. The master regulator WOR1 is exclusively expressed in opaque phase cells. Positive feedback regulation by Wor1 on the WOR1 promoter is essential for opaque formation, however the underlying mechanism of how Wor1 functions is not clear. Here, we use tandem affinity purification coupled with mass spectrometry to identify Wor1-interacting proteins. Tup1 and its associated complex proteins are found as the major factors associated with Wor1. Tup1 occupies the same regions of the WOR1 promoter as Wor1 preferentially in opaque cells. Loss of Tup1 is sufficient to induce the opaque phase, even in the absence of Wor1. This is the first such report of a bypass of Wor1 in opaque formation. These genetic analyses suggest that Tup1 is a key repressor of the opaque state, and Wor1 functions via alleviating Tup1 repression at the WOR1 promoter. Opaque cells convert to white en masse at 37°C. We show that this conversion occurs only in the presence of glycolytic carbon sources. The opaque state is stabilized when cells are cultured on non-glycolytic carbon sources, even in a MTLa/α background. We further show that temperature and carbon source affect opaque stability by altering the levels of Wor1 and Tup1 at the WOR1 promoter. We propose that Wor1 and Tup1 form the core regulatory circuit controlling the opaque transcriptional program. This model provides molecular insights on how C. albicans adapts to different host signals to undergo phenotypic switching for colonization in distinct host niches.
Iron is an essential nutrient required as a cofactor for many biological processes. As a fungal commensal-pathogen of humans, Candida albicans encounters a range of bioavailable iron levels in the human host and maintains homeostasis with a conserved regulatory circuit. How C. albicans senses and responds to iron availability is unknown. In model yeasts, regulation of the iron homeostasis circuit requires monothiol glutaredoxins (Grxs), but their functions beyond the regulatory circuit are unclear. Here, we show Grx3 is required for virulence and growth on low iron for C. albicans. To explore the global roles of Grx3, we applied a proteomic approach and performed in vivo cross-linked tandem affinity purification coupled with mass spectrometry. We identified a large number of Grx3 interacting proteins that function in diverse biological processes. This included Fra1 and Bol2/Fra2, which function with Grxs in intracellular iron trafficking in other organisms. Grx3 interacts with and regulates the activity of Sfu1 and Hap43, components of the C. albicans iron regulatory circuit. Unlike the regulatory circuit, which determines expression or repression of target genes in response to iron availability, Grx3 amplifies levels of gene expression or repression. Consistent with the proteomic data, the grx3 mutant is sensitive to heat shock, oxidative, nitrosative, and genotoxic stresses, and shows growth dependence on histidine, leucine, and tryptophan. We suggest Grx3 is a conserved global regulator of iron-dependent processes occurring within the cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.