In terms of geotechnical engineering, swelling soils are among the most important soil groups whose characteristics should be determined in detail before design studies. These types of soils cause significant damage to engineering structures. For this reason, it is expected that the swelling behavior of the soils will be known in advance to minimize the damage that may occur in the structures. Within the scope of this study, the swelling pressures of bentonite clay with 10 different water content were determined by keeping all conditions the same to reveal the effect of water content on soil swelling behavior. In this context, bentonite-type (montmorillonite content) clay, which has a very swelling property when it comes in contact with water, was used in the experiments. The fixed volume swelling pressure test method was used in the experiments and all samples were compressed at the same rate and placed in the swelling test device. In all samples left to swell with pure water, measurements were made for 10 days and the effects of swelling pressures on the initial water content were discussed. Thereafter, another swelling soil was stabilized using basic oxygen furnace slag (BOFS) during different curing times, and after performing the swelling pressure test, the results were compared with the findings obtained from different initial water contents. According to the results, while the swelling pressures increase in the regions close to optimum water content, significant decreases are observed in swelling pressure values in wetter and drier regions than in optimum water content. Finally, the results indicated that the application of BOFS, albeit small, after the proper curing time can significantly affect the swelling behavior of bentonite, even more than changing the initial water content.
In this study, the design of safe slopes was investigated, which is one of the main topics in geotechnical engineering. Another factor that should be considered in the design of safe slopes is seismic loads in addition to static loads. As part of the study, a series of slope stability analyzes were performed using finite element software by applying earthquakes with different characteristics to the model slope, which was designed with the intention of investigating slope behavior under seismic loads. The model slope designed in this context was analyzed with 12 real earthquake record data that occurred in different regions with different scenarios and had many station measurements. As a result, the effects of these earthquakes on the stability of the designed model slope were pointed out and the points that should be considered to obtain safer and more economical results in slope design in the direction of the obtained data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.