Given the complexity and heterogeneity in Cloud computing scenarios, the modeling approach has widely been employed to investigate and analyze the energy consumption of Cloud applications, by abstracting real-world objects and processes that are difficult to observe or understand directly. It is clear that the abstraction sacrifices, and usually does not need, the complete reflection of the reality to be modeled. Consequently, current energy consumption models vary in terms of purposes, assumptions, application characteristics and environmental conditions, with possible overlaps between different research works. There- fore, it would be necessary and valuable to reveal the state-of-the-art of the existing modeling efforts, so as to weave different models together to facilitate comprehending and further investigating application energy consumption in the Cloud domain. By systematically selecting, assessing and synthesizing 76 relevant studies, we rationalized and organized over 30 energy consumption models with unified notations. To help investigate the existing models and facilitate future modeling work, we deconstructed the runtime execution and deployment environment of Cloud applications, and identified 18 environmental factors and 12 workload factors that would be influential on the energy consumption. In particular, there are complicated trade-offs and even debates when dealing with the combinational impacts of multiple factors.
Current open issues regarding cloud computing include the support for nontrivial Quality of Service-related Service Level Objectives (SLOs) and reducing the energy footprint of data centers. One strategy that can contribute to both is the integration of accelerators as specialized resources within the cloud system. In particular, Field Programmable Gate Arrays (FPGAs) exhibit an excellent performance/energy consumption ratio that can be harnessed to achieve these goals. In this paper, a multilevel cloud scheduling framework is described, and several FPGA-aware node level scheduling strategies (applied at the hypervisor level) are explored and analyzed. These strategies are based on the use of a multiobjective metric aimed at providing Quality of Service (QoS) support. Results show how the proposed FPGA-aware scheduling policies increment the number of users requests serviced with their SLOs fulfilled while energy consumption is minimized. In particular, evaluation results of a use case based on a multimedia application show that the proposal can save more than 20% of the total energy compared with other baseline algorithms while a higher percentage of Service Level Agreement (SLA) is fulfilled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.