Introgression is the transfer of genes or genomic regions from one species into another via hybridization and back-crosses. We have introgressed four translocations (EB4, IBj5, UK14-1, and B362i) from Neurospora crassa into N. tetrasperma. This enabled us to construct two general types of heterokaryons with mat-A and mat-a nuclei of different genotypes: one type is [T + N] (with one translocation nucleus and one normal sequence nucleus), and the other is [Dp + Df] (with one nucleus carrying a duplication of the translocation region and the other being deleted for the translocation region). Self-crossing these heterokaryons again produced [T + N] and [Dp + Df] progeny. From conidia (vegetative spores) produced by the heterokaryotic mycelia, we obtained self-fertile (heterokaryotic) and self-sterile (homokaryotic) derivative strains. [T + N] heterokaryons produced homokaryotic conidial derivatives of both mating types, but [Dp + Df] heterokaryons produced viable conidial homokaryons of only the mating type of the Dp nucleus. All four [T + N] heterokaryons and three [Dp + Df] heterokaryons produced both self-sterile and self-fertile conidial derivatives, but the [Dp(B362i) + Df(B362i)] heterokaryons produced only self-sterile ones. Conceivably, the Df(B362i) nuclei may be deleted for a nucleus-limited gene required for efficient mitosis or nuclear division, and whose deficit is not complemented by the neighboring Dp(B362i) nuclei. A cross involving Dp(EB4) showed repeat-induced point mutation (RIP). Because RIP can occur in self-crosses of [Dp + Df] but not [T + N] heterokaryons, RIP alteration of a translocated segment would depend on the relative numbers of [Dp + Df] vs. [T + N] ancestors.
Introgression is the transfer of genes or genomic regions from one species into another via hybridization and back-crosses. We have introgressed four translocations (EB4, IBj5, UK14-1, and B362i) from Neurospora crassa into N. tetrasperma. This enabled us to construct two general types of heterokaryons with mat-A and mat-a nuclei of different genotypes: one type is [T + N] (with one translocation nucleus and one normal sequence nucleus), and the other is [Dp + Df] (with one nucleus carrying a duplication of the translocation region and the other being deleted for the translocation region). Self-crossing these heterokaryons again produced [T + N] and [Dp + Df] progeny. From conidia (vegetative spores) produced by the heterokaryotic mycelia, we obtained self-fertile (heterokaryotic) and self-sterile (homokaryotic) derivative strains. [T + N] heterokaryons produced homokaryotic conidial derivatives of both mating types, but [Dp + Df] heterokaryons produced viable conidial homokaryons of only the mating type of the Dp nucleus. All four [T + N] heterokaryons and three [Dp + Df] heterokaryons produced both self-sterile and self-fertile conidial derivatives, but the [Dp(B362i) + Df(B362i)] heterokaryons produced only self-sterile ones. Conceivably, the Df(B362i) nuclei may be deleted for a nucleus-limited gene required for efficient mitosis or nuclear division, and whose deficit is not complemented by the neighboring Dp(B362i) nuclei. A cross involving Dp(EB4) showed repeat-induced point mutation (RIP). Because RIP can occur in self-crosses of [Dp + Df] but not [T + N] heterokaryons, RIP alteration of a translocated segment would depend on the relative numbers of [Dp + Df] vs. [T + N] ancestors.
During ascogenesis in Neurospora, the ascospores are partitioned at the eight-nucleus stage that follows meiosis and a post-meiotic mitosis, and the ascospores that form in eight-spored asci are usually homokaryotic. We had previously created novel TNt strains by introgressing four Neurospora crassa insertional translocations (EB4, IBj5, UK14-1, and B362i) into N. tetrasperma. We now show that crosses of all the TNt strains with single-mating-type derivatives of the standard N. tetrasperma pseudohomothallic strain 85 (viz. Ta x 85A or TA x 85a) can produce rare eight-spored asci that contain heterokaryotic ascospores, or ascospores with other unexpected genotypes. Our results suggest that these rare asci result from the interposition of additional mitoses between the post-meiotic mitosis and the partitioning of nuclei into ascospores, leading to the formation of supernumerary nuclei that then generate the heterokaryotic ascospores. The rare asci probably represent a background level of ascus dysgenesis wherein the partitioning of ascospores becomes uncoupled from the post-meiotic mitosis. Ordinarily, the severest effect of such dysgenesis, the production of mating-type heterokaryons, would be suppressed by the N. crassa tol (tolerant) gene, thus explaining why such dysgenesis remained undetected thus far.
Four insertional or quasiterminal translocations (T) were recently introgressed fromNeurospora crassa into N. tetrasperma. Crosses of two of the resulting T Nt strains with N. tetrasperma N strains (N = normal sequence) produced more Dp than T and N homokaryotic progeny, although [T + N] and [Dp + Df] heterokaryotic progeny were made in roughly equal numbers. The T, N, and [T + N] progeny are derived from alternate segregation (ALT), whereas adjacent-1 segregation (ADJ) generates the Dp, Df, and [Dp + Df] types. Differential recovery of homokaryotic products from ALT and ADJ represents a novel and unprecedented type of meiotic drive. This drive contributed to our inability to introgress a larger insertions translocation, T(VR>VIL)UK3-41, into N. tetrasperma. We suggest that one or more Bateson-Dobzhansky-Muller type incompatibility between N. crassa and N. tetrasperma genes in the T Nt x N crosses might cause an insufficiency for a product required for ascospore maturation. Since the Df type is inviable, only four ascospores (Dp or [Dp + Df] types) share this limited resource in [Dp + Df] asci, whereas four to eight ascospores compete for it in [T + N] asci. This increases the chance that in asci with >4 ascospores none properly matures, and results in Dp progeny out-numbering T and N types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.