A mobile wireless sensor network (MWSN) consists of many sensor nodes, which can move from one position to another and gather data from the environment, and such nodes are coordinated with the support of a sink node. In recent years, the mobility behavior of sensor nodes present in wireless sensor networks is used to form effective clustering and to perform cluster-based routing. Virtual force is an important phenomenon in sensor nodes, which is used to model the mobility behavior. Production rules that use spatiotemporal constraints are able to make more accurate decisions on mobility speed, mobility area, and the required time. Routing in MWSNs under the mobility scenario will provide better performance if virtual force-based mobility modeling is used to form clusters. In this paper, an intelligent routing algorithm called virtual force-based intelligent clustering for energy-efficient routing in MWSNs has been proposed for effective and energy-efficient cluster-based routing of data packets collected by mobile sensor nodes in a MWSN. This algorithm uses attractive and repulsive forces for finding the cluster members. Moreover, spatiotemporal constraints are used in the form of rules for clustering, reclustering, and cluster head election and to perform routing through the cluster heads using intelligent rules. The main advantage of the proposed algorithm is that it increases the network lifetime and packet delivery ratio. Moreover, it reduces the delay and the energy consumption.
Data transmission in intelligent transportation systems is being challenged by a variety of factors, such as open wireless communication channels, that pose problems related to security, anonymity, and privacy. To achieve secure data transmission, several authentication schemes are proposed by various researchers. The most predominant schemes are based on identity-based and public-key cryptography techniques. Due to limitations such as key escrow in identity-based cryptography and certificate management in public-key cryptography, certificate-less authentication schemes arrived to counter these challenges. This paper presents a comprehensive survey on the classification of various types of certificate-less authentication schemes and their features. The schemes are classified based on their type of authentication, the techniques used, the attacks they address, and their security requirements. This survey highlights the performance comparison of various authentication schemes and presents the gaps in them, thereby providing insights for the realization of intelligent transportation systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.