The precise nature of the relationship between language and thought is an intriguing and challenging area of inquiry for scientists across many disciplines. In the realm of neuropsychology, research has investigated the inter-dependence of language and thought by testing individuals with compromised language abilities and observing whether performance in other cognitive domains is diminished. One group of such individuals is patients with aphasia who have an impairment in speech and language arising from a brain injury, such as a stroke. Our previous research has shown that the degree of language impairment in these individuals is strongly associated with the degree of impairment on complex reasoning tasks, such as the Wisconsin Card Sorting Task (WCST) and Raven’s Matrices. In the current study, we present new data from a large group of individuals with aphasia that show a dissociation in performance between putatively non-verbal tasks on the Wechsler Adult Intelligence Scale (WAIS) that require differing degrees of reasoning (Picture Completion vs. Picture Arrangement tasks). We also present an update and replication of our previous findings with the WCST showing that individuals with the most profound core language deficits (i.e., impaired comprehension and disordered language output) are particularly impaired on problem-solving tasks. In the second part of the paper, we present findings from a neurologically intact individual known as “Chelsea” who was not exposed to language due to an unaddressed hearing loss that was present since birth. At the age of 32, she was fitted with hearing aids and exposed to spoken and signed language for the first time, but she was only able to acquire a limited language capacity. Chelsea was tested on a series of standardized neuropsychological measures, including reasoning and problem-solving tasks. She was able to perform well on a number of visuospatial tasks but was disproportionately impaired on tasks that required reasoning, such as Raven’s Matrices and the WAIS Picture Arrangement task. Together, these findings suggest that language supports complex reasoning, possibly due to the facilitative role of verbal working memory and inner speech in higher mental processes.
The neural basis of reading and writing has been a source of inquiry as well as controversy in the neuroscience literature. Reading has been associated with both left posterior ventral temporal zones (termed the "visual word form area") as well as more dorsal zones, primarily in left parietal cortex. Writing has also been associated with left parietal cortex, as well as left sensorimotor cortex and prefrontal regions. Typically, the neural basis of reading and writing are examined in separate studies and/or rely on single case studies exhibiting specific deficits. Functional neuroimaging studies of reading and writing typically identify a large number of activated regions but do not necessarily identify the core, critical hubs. Last, due to constraints on the functional imaging environment, many previous studies have been limited to measuring the brain activity associated with single-word reading and writing, rather than sentence-level processing. In the current study, the brain correlates of reading and writing at both the single- and sentence-level were studied in a large sample of 111 individuals with a history of chronic stroke using voxel-based lesion symptom mapping (VLSM). VLSM provides a whole-brain, voxel-by-voxel statistical analysis of the role of distinct regions in a particular behavior by comparing performance of individuals with and without a lesion at every voxel. Rather than comparing individual cases or small groups with particular behavioral dissociations in reading and writing, VLSM allowed us to analyze data from a large, well-characterized sample of stroke patients exhibiting a wide range of reading and writing impairments. The VLSM analyses revealed that reading was associated with a critical left inferior temporo-occipital focus, while writing was primarily associated with the left supramarginal gyrus. Separate VLSM analyses of single-word versus sentence-level reading showed that sentence-level reading was uniquely associated with anterior to mid-portions of the middle and superior temporal gyri. Both single-word and sentence-level writing overlapped to a great extent in the left supramarginal gyrus, but sentence-level writing was associated with additional underlying white matter pathways such as the internal capsule. These findings suggest that critical aspects of reading and writing processes diverge, with reading relying critically on the ventral visual recognition stream and writing relying on a dorsal visuo-spatial-motor stream.
Neurobiology of pediatric and adult MSThe few pathological studies of pediatric MS suggest that it shares many features with the adult disease. As in adult MS, myelin and axonal damage have also been found in normal-appearing intrahemispheric, interhemispheric, and projection white matter tracts. 9 Despite some remyelination after an attack, over time neurological functioning is permanently decreased due to irreversible axonal injury, depletion of oligodendrocytes, and gliosis. 10 Notably, a recent study has suggested that the extent of acute axonal damage in early active demyelinating lesions is increased by 50% in pediatric patients as compared to adults. 11 This finding may provide some explanation for the often observed severe onset in pediatric MS. Neuropsychological correlates of multiple sclerosis across the lifespanJulia Nunan-Saah, Selvi R Paulraj, Emmanuelle Waubant, Lauren B Krupp and Rowena G Gomez Abstract: Multiple sclerosis can adversely affect cognitive functioning whether the disease has an adult or pediatric onset. The research thus far suggests that pediatric MS shares many features with adult MS but is also unique in several respects. One particular characteristic of pediatric MS is that, while physical disability develops more slowly as compared with adult patients, the impact of cognitive deficits in children may be more substantial as they are in a period of life during which they acquire many skills that are needed to transition into independently functioning adults. Our review takes a lifespan approach to MS, comparing and contrasting the neuropsychology (i.e., cognitive, psychological, and psychosocial factors) of these two populations. Understanding how MS manifests across the lifespan has important implications for tailoring assessment and treatment for individuals with MS as they transition from childhood to adulthood, and later life.
Visuospatial processing deficits are typically associated with damage to the right hemisphere. However, deficits on spatial working memory have been reported among some individuals with focal left hemisphere damage (LHD). It has been suggested that the left hemisphere may play a role in such non-verbal working memory tasks due to the use of subvocal, verbally-mediated strategies. The current study investigated the role of the left hemisphere in spatial working memory by testing spatial span performance, both forward and backward, in a large group of individuals with a history of left hemisphere stroke. Our first aim was to establish whether individuals with LHD are indeed impaired on spatial span tasks using standardized span tasks with published normative data. Our second aim was to identify the role that language plays in supporting spatial working memory by comparing LHD individuals with and without aphasia, and by relating spatial span performance to performance on a series of language measures. Our third aim was to identify left hemisphere brain regions that contribute to spatial working memory using voxel-based lesion symptom mapping (VLSM), a whole-brain statistical approach that identifies regions critical to a particular behavior on a voxel-by-voxel basis. We found that 28% of individuals with LHD performed in the clinically-impaired range on forward spatial span and 16% performed in the clinically-impaired range on backward spatial span. There were no significant differences in performance between individuals with and without aphasia, and there were no correlations between spatial span performance and language functions such as repetition and comprehension. The VLSM analysis showed that backward spatial span was associated with a left fronto-parietal network consisting of somatosensory cortex, the supramarginal gyrus, lateral prefrontal cortex, and the frontal eye fields. Regions identified in the VLSM analysis of forward spatial span did not reach the conservative statistical threshold for significance. Overall, these results suggest that spatial working memory, as measured by spatial span, can be significantly disrupted in a subset of individuals with LHD whose lesions infringe on a network of regions in the left hemisphere that have been implicated in domain-general working memory and attentional control mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.