Background The high prevalence and severity of methamphetamine (MA) abuse demands greater neurobiological understanding of its etiology. Methods Here, we conducted immunoblotting and in vivo microdialysis procedures in Methamphetamine High/Low Drinking (MAH/LDR) mice, as well as in isogenic C57BL/6J mice that varied in their MA-preference/taking, to examine the glutamate underpinnings of MA abuse vulnerability. Neuropharmacological and Homer2 knock-down approaches were also employed in C57BL/6J mice to confirm the role for nucleus accumbens glutamate/Homer2 expression in MA preference/aversion. Results We identified a hyper-glutamatergic state within the nucleus accumbens (NAC) as a biochemical trait corresponding with both genetic and idiopathic vulnerability for high MA-preference and -taking. We also confirmed that subchronic, subtoxic MA experience elicits a hyper-glutamatergic state within the NAC during protracted withdrawal, characterized by elevated mGlu1/5 receptor function and Homer2 receptor-scaffolding protein expression. A high MA-preferring phenotype was recapitulated by elevating endogenous glutamate within the NAC shell of mice and we reversed MA-preference/taking by lowering endogenous glutamate and/or Homer2 expression within this subregion. Conclusions Our data point to an idiopathic, genetic or drug-induced hyper-glutamatergic state within the NAC as a mediator of MA addiction vulnerability.
Methamphetamine (MA) is a widely abused, highly addictive, psychostimulant that elicits pronounced deficits in neurocognitive function related to hypo-functioning of the prefrontal cortex (PFC). Our understanding of how repeated methamphetamine impacts excitatory glutamatergic transmission within the PFC is limited, as is information about the relation between PFC glutamate and addiction vulnerability/resiliency. In vivo microdialysis and immunoblotting studies characterized the effects of methamphetamine (10 injections of 2 mg/kg, IP) upon extracellular glutamate in C57BL/6J mice and upon glutamate receptor and transporter expression, within the medial PFC. Glutamatergic correlates of both genetic and idiopathic variance in MA preference/intake were determined through studies of high versus low MA-drinking selectively bred mouse lines (MAHDR versus MALDR, respectively) and inbred C57BL/6J mice exhibiting spontaneously divergent place-conditioning phenotypes. Repeated methamphetamine sensitized drug-induced glutamate release and lowered indices of NMDA receptor expression in C57BL/6J mice, but did not alter basal extracellular glutamate content or total protein expression of Homer proteins, or metabotropic or AMPA glutamate receptors. Elevated basal glutamate, blunted methamphetamine-induced glutamate release and ERK activation, as well as reduced protein expression of mGlu2/3 and Homer2a/b were all correlated biochemical traits of selection for high versus low methamphetamine drinking, and Homer2a/b levels were inversely correlated with the motivational valence of methamphetamine in C57BL/6J mice. These data provide novel evidence that repeated, low-dose, methamphetamine is sufficient to perturb pre- and post-synaptic aspects of glutamate transmission within the medial PFC and that glutamate anomalies within this region may contribute to both genetic and idiopathic variance in methamphetamine addiction vulnerability/resiliency.
The bed nucleus of the stria terminalis (BNST) is part of the limbic-hypothalamic system important for behavioral responses to stress, and glutamate transmission within this region has been implicated in the neurobiology of alcoholism. Herein, we used a combination of immunoblotting, neuropharmacological and transgenic procedures to investigate the role for metabotropic glutamate receptor 5 (mGlu5) signaling within the BNST in excessive drinking. We discovered that mGlu5 signaling in the BNST is linked to excessive alcohol consumption in a manner distinct from behavioral or neuropharmacological endophenotypes that have been previously implicated as triggers for heavy drinking. Our studies demonstrate that, in male mice, a history of chronic binge alcohol-drinking elevates BNST levels of the mGlu5-scaffolding protein Homer2 and activated extracellular signal-regulated kinase (ERK) in an adaptive response to limit alcohol consumption. Male and female transgenic mice expressing a point mutation of mGlu5 that cannot be phosphorylated by ERK exhibit excessive alcohol-drinking, despite greater behavioral signs of alcohol intoxication and reduced anxiety, and are insensitive to local manipulations of signaling in the BNST. These transgenic mice also show selective insensitivity to alcohol-aversion and increased novelty-seeking, which may be relevant to excessive drinking. Further, the insensitivity to alcohol-aversion exhibited by male mice can be mimicked by the local inhibition of ERK signaling within the BNST. Our findings elucidate a novel mGluR5-linked signaling state within BNST that plays a central and unanticipated role in excessive alcohol consumption.
An interaction exists between stress and alcohol in the etiology and chronicity of alcohol use disorders; yet a knowledge gap exists regarding the neurobiological underpinnings of this interaction. In this regard, we employed an 11-day unpredictable, chronic, mild stress (UCMS) procedure to examine for stress-alcohol cross-sensitization of motor activity, as well as alcohol consumption/preference and intoxication. We also employed immunoblotting to relate the expression of glutamate receptor-related proteins within subregions of the nucleus accumbens (NAC) to the manifestation of behavioral cross-sensitization. UCMS mice exhibited a greater locomotor response to an acute injection of 2 g/kg alcohol than unstressed controls and this cross-sensitization extended to alcohol intake (0–20%), as well as to the intoxicating and sedative properties of 3 and 5 g/kg alcohol, respectively. Regardless of prior alcohol injection (2 g/kg), UCMS mice exhibited elevated NAC shell levels of mGlu1α, GluN2b and Homer2, as well as lower PLCβ within this subregion. GluN2b levels were also lower within the NAC core of UCMS mice. The expression of stress-alcohol locomotor cross-sensitization was associated with lower mGlu1α within the NAC core and lower ERK activity within both NAC subregions. As Homer2 regulates alcohol sensitization, we assayed also for locomotor cross-sensitization in Homer2 wild-type (WT) and knock-out (KO) mice. WT mice exhibited a very robust cross-sensitization, that was absent in KO animals. These results indicate that a history of mild stress renders an animal more sensitive to the psychomotor and rewarding properties of alcohol, which may depend upon neuroplasticity within NAC glutamate transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.