When molecules are close to plasmonic nanoparticles, they form hybridized lightmatter or plexciton states. Potential use of plexcitonic materials depends on their coherence and excitation lifetimes, and thus, it is important to identify their limiting factors. We combine theoretical modeling with multidimensional spectroscopy to study relaxation of plexciton states from a few femtoseconds to their thermalization. This enables us to assign responsible physical mechanisms and provide an understanding on which to base further improvements of the materials.
When plasmons supported by metal nanoparticles interact strongly with molecular excitons or excitons of semiconducting quantum dots, plexcitons are formed in the strong coupling regime. The hybrid plexcitonic nanoparticles with a wide range of sizes and shapes have been synthesized by using wet chemistry methods or have been fabricated on solid substrates by using lithographic techniques. In order to deeply understand plasmon−exciton interaction at the nanoscale dimension and boost the performance of nanophotonic devices made of plexcitonic nanoparticles, new types of plexcitonic nanoparticles with tunable optical properties and outstanding stability at room temperature are urgently needed. Herein, we for the first time report pure colloidal nanodisk shaped plexcitonic nanoparticles with very large Rabi splitting energies, i.e., more than 350 meV. We synthesize silver nanoprisms by using seed mediated synthesis and then convert nanoprisms to nanodisks at a high temperature. Localized plasmon resonance of the silver nanodisk in the visible spectrum can be effectively tuned by heating. Subsequently, self-assembly of J-aggregate dyes on plasmonic nanodisks produces plexcitonic nanoparticles. We envision that colloidal nanodisk shaped plexcitonic nanoparticles with very large Rabi splitting energies and outstanding stability at room temperature will enlarge the application of plexcitonic nanoparticles in a variety of fields such as polariton laser, biosensor, plasmon molecular nanodevices, and energy flow at nanoscale dimensions.
Nobel-metal nanostructures strongly localize and manipulate light at nanoscale dimension by supporting surface plasmon polaritons. In fact, the optical properties of the nobel-metal nanostructures strongly depend on their morphology and composition. Until now, various metal nanostructures such as nanocubes, nanoprisms, nanorods, and recently hollow nanostructures have been demonstrated. In addition, the plasmonic field can be further enhanced at nanoparticle dimers and aggregates because of highly localized and intense optical fields, which is known as "plasmonic hot spots". However, colloidally synthesized and circular-shaped nanoring nanostructures with plasmonic hot spots are still lacking. We, herein, show for the first time that colloidal bimetallic nanorings with plasmonic nanocavities and tunable plasmon resonance wavelengths can be synthesized via colloidal synthesis and galvanic replacement reactions. In addition, in the strong coupling regime, plasmons in nanorings and excitons in J-aggregates interact strongly and nanoring-shaped colloidal plexcitonic nanoparticles are demonstrated. The results reveal that the optical properties of the nanoring and the onset of strong coupling can be tamed by the galvanic replacement reaction. Further, the plasmonic nanocavity in the nanorings has immense potential for applications in sensing and spectroscopy because of the space, enclosed by the plasmonic nanocavity, is empty and accessible to a variety of molecules, ions, and quantum dots.
The advances in colloid chemistry and nanofabrication allowed us to synthesize Noble monometallic and bimetallic nanocrystals with tunable optical properties in the visible and near infrared region of the electromagnetic...
Carbon quantum dots (CDs) have recently received a tremendous amount of interest owing to their attractive optical properties. However, CDs have broad absorption and emission spectra limiting their application ranges. We herein, for the first time, show synthesis of water-soluble red emissive CDs with a very narrow line width (∼75 meV) spectral absorbance and hence demonstrate strong coupling of CDs and plasmon polaritons in liquid crystalline mesophases. The excited state dynamics of CDs has been studied by ultrafast transient absorption spectroscopy, and CDs display very stable and strong photoluminescence emission with a quantum yield of 35.4% and a lifetime of ∼2 ns. More importantly, we compare J -aggregate dyes with CDs in terms of their absorption line width, photostability, and ability to do strong coupling, and we conclude that highly fluorescent CDs have a bright future in the mixed light–matter states for emerging applications in future quantum technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.