It has been empirically established that the cerebral cortical areas defined by Brodmann one hundred years ago solely on the basis of cellular organization are closely correlated to their function, such as sensation, association, and motion. Cytoarchitectonically distinct cortical areas have different densities and types of neurons. Thus, signaling patterns may also vary among cytoarchitectonically unique cortical areas. To examine how neuronal signaling patterns are related to innate cortical functions, we detected intrinsic features of cortical firing by devising a metric that efficiently isolates non-Poisson irregular characteristics, independent of spike rate fluctuations that are caused extrinsically by ever-changing behavioral conditions. Using the new metric, we analyzed spike trains from over 1,000 neurons in 15 cortical areas sampled by eight independent neurophysiological laboratories. Analysis of firing-pattern dissimilarities across cortical areas revealed a gradient of firing regularity that corresponded closely to the functional category of the cortical area; neuronal spiking patterns are regular in motor areas, random in the visual areas, and bursty in the prefrontal area. Thus, signaling patterns may play an important role in function-specific cerebral cortical computation.
Summary Cortical motor areas are thought to contribute “higher order processing” but what that processing might include is unknown. Previous studies of the smooth pursuit-related discharge of supplementary eye field (SEF) neurons did not distinguish activity associated with the preparation for pursuit from discharge related to processing or memory of the target motion signals. Using a new, memory-based task, which was designed to separate these components, we show that the SEF contains signals coding retinal image-slip-velocity, memory and assessment of visual motion-direction, the decision of whether or not to pursue, and the preparation for pursuit eye movements. Bilateral muscimol injection into SEF resulted in directional errors in smooth pursuit, errors of whether or not to pursue, and impairment of initial correct eye movements. These results suggest an important role for the SEF in memory and assessment of visual motion-direction and the programming of appropriate pursuit eye movements.
The architectonic subdivisions of the brain are believed to be functional modules, each processing parts of global functions. Previously, we showed that neurons in different regions operate in different firing regimes in monkeys. It is possible that firing regimes reflect differences in underlying information processing, and consequently the firing regimes in homologous regions across animal species might be similar. We analyzed neuronal spike trains recorded from behaving mice, rats, cats, and monkeys. The firing regularity differed systematically, with differences across regions in one species being greater than the differences in similar areas across species. Neuronal firing was consistently most regular in motor areas, nearly random in visual and prefrontal/medial prefrontal cortical areas, and bursting in the hippocampus in all animals examined. This suggests that firing regularity (or irregularity) plays a key role in neural computation in each functional subdivision, depending on the types of information being carried.Key words: firing irregularity/regularity; interspecies similarity; neuronal firing pattern; neuronal firing regime Significance StatementBy analyzing neuronal spike trains recorded from mice, rats, cats, and monkeys, we found that different brain regions have intrinsically different firing regimes that are more similar in homologous areas across species than across areas in one species. Because different regions in the brain are specialized for different functions, the present finding suggests that the different activity regimes of neurons are important for supporting different functions, so that appropriate neuronal codes can be used for different modalities.
Through the development of a high-acuity fovea, primates with frontal eyes have acquired the ability to use binocular eye movements to track small objects moving in space. The smooth-pursuit system moves both eyes in the same direction to track movement in the frontal plane (frontal pursuit), whereas the vergence system moves left and right eyes in opposite directions to track targets moving towards or away from the observer (vergence tracking). In the cerebral cortex and brainstem, signals related to vergence eye movements--and the retinal disparity and blur signals that elicit them--are coded independently of signals related to frontal pursuit. Here we show that these types of signal are represented in a completely different way in the smooth-pursuit region of the frontal eye fields. Neurons of the frontal eye field modulate strongly during both frontal pursuit and vergence tracking, which results in three-dimensional cartesian representations of eye movements. We propose that the brain creates this distinctly different intermediate representation to allow these neurons to function as part of a system that enables primates to track and manipulate objects moving in three-dimensional space.
Recently, we examined the neuronal substrate of predictive pursuit during memory-based smooth pursuit and found that supplementary eye fields (SEFs) contain signals coding assessment and memory of visual motion direction, decision not-to-pursue (“no-go”), and preparation for pursuit. To determine whether these signals were unique to the SEF, we examined the discharge of 185 task-related neurons in the caudal frontal eye fields (FEFs) in 2 macaques. Visual motion memory and no-go signals were also present in the caudal FEF but compared with those in the SEF, the percentage of neurons coding these signals was significantly lower. In particular, unlike SEF neurons, directional visual motion responses of caudal FEF neurons decayed exponentially. In contrast, the percentage of neurons coding directional pursuit eye movements was significantly higher in the caudal FEF than in the SEF. Unlike SEF inactivation, muscimol injection into the caudal FEF did not induce direction errors or no-go errors but decreased eye velocity during pursuit causing an inability to compensate for the response delays during sinusoidal pursuit. These results indicate significant differences between the 2 regions in the signals represented and in the effects of chemical inactivation suggesting that the caudal FEF is primarily involved in generating motor commands for smooth-pursuit eye movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.