SUMMARYMirage is a camera pose estimation method that analytically solves pose parameters in linear time for multi-camera systems. It utilizes a reference camera pose to calculate the pose by minimizing the 2D projection error between reference and actual pixel coordinates. Previously, Mirage has been successfully applied to trajectory tracking (visual servoing) problem. In this study, a comprehensive evaluation of Mirage is performed by particularly focusing on the area of camera pose estimation. Experiments have been performed using simulated and real data on noisy and noise-free environments. The results are compared with the state-of-the-art techniques. Mirage outperforms other methods by generating fast and accurate results in all tested environments.
Automated image analysis of microscopic images such as protein crystallization images and cellular images is one of the important research areas. If objects in a scene appear at different depths with respect to the camera's focal point, objects outside the depth of field usually appear blurred. Therefore, scientists capture a collection of images with different depths of field. Focal stacking is a technique of creating a single focused image from a stack of images collected with different depths of field. In this paper, we introduce a novel focal stacking technique, FocusALL, which is based on our modified Harris Corner Response Measure. We also propose enhanced FocusALL for application on images collected under high resolution and varying illumination. FocusALL resolves problems related to the assumption that in focus regions have high contrast and high intensity. Especially, FocusALL generates sharper boundaries around protein crystal regions and good in focus images for high resolution images in reasonable time. FocusALL outperforms other methods on protein crystallization images and performs comparably well on other datasets such as retinal epithelial images and simulated datasets.
In this paper, we investigate the performance of two wrapper methods for semi-supervised learning algorithms for classification of protein crystallization images with limited labeled images. Firstly, we evaluate the performance of semi-supervised approach using self-training with naïve Bayesian (NB) and sequential minimum optimization (SMO) as the base classifiers. The confidence values returned by these classifiers are used to select high confident predictions to be used for self-training. Secondly, we analyze the performance of Yet Another Two Stage Idea (YATSI) semi-supervised learning using NB, SMO, multilayer perceptron (MLP), J48 and random forest (RF) classifiers. These results are compared with the basic supervised learning using the same training sets. We perform our experiments on a dataset consisting of 2250 protein crystallization images for different proportions of training and test data. Our results indicate that NB and SMO using both self-training and YATSI semi-supervised approaches improve accuracies with respect to supervised learning. On the other hand, MLP, J48 and RF perform better using basic supervised learning. Overall, random forest classifier yields the best accuracy with supervised learning for our dataset.
Unmanned vehicles are autonomous robotic systems that are fully or partially controlled by an operator remotely from a station. In the last 2 decades, massive amount of advancements have been observed regarding unmanned vehicles for both military and civilian purposes. Today majority of these vehicles require human guidance even for basic missions, thus, minimizing the human intervention on such systems is one of the emerging research topics. To serve this purpose, this study proposes a new trajectory tracking algorithm using M irage pose estimation method. Mirage employs target pixel errors in 2D image plane and analytically calculates the robot's pose in 3D Euclidean space. Therefore, complex computations are not needed and undesirable Euclidean trajectories are avoided since the vehicle pose is directly controlled. We performed both simulations and real experiments to verify the effectiveness of our method. The results show that the proposed method is a feasible alternative for vision-based Euclidean trajectory tracking with high accuracy and low complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.