Support Vector Machines (SVMs) are being used extensively now days in the arena of pattern recognition and regression analysis. It has become a good choice for machine learning both for supervised and unsupervised learning purposes. The SVM is primarily based on the mapping the data to a hyperplane using some kernel function and then increasing the margin between the hype planes so this hyperplane classifies the data in the normal and fault state. Due to large amount of input data, it is computationally cumbersome to yield the desired results in shortest possible time by using SVM. To overcome this difficulty in this work, we have employed statistical Time-Domain Features like Root Mean Square (RMS), Variance, Skewness and Kurtosis as pre-processors to the input raw data. Then various combinations of these time-domains signals and features have been used as inputs and their effects on the optimal model selection have been investigated thoroughly and optimal one has been suggested. The procedure presented here is computational less expensive otherwise to process the input data for model selection we may have to use super computer. The implementation of proposed method for machine learning is not much complicated and by using this procedure, an impending fault/abnormal behavior of the machine can be detected beforehand.
Sewing defect detection is an essential step in garment production quality control. Although sewing defects significantly influence the quality of clothing, they are yet to be studied widely compared to fabric defects. In this study, to address sewing defect detection and develop an appropriate method for small and labor-intensive garment companies, an on-machine broken stitch detection system is proposed. In hardware, a versatile mounting kit, including clamping, display, and adjustable linkage for a camera, is presented for easy installation on a typical industrial sewing machine and for placing the camera close to the sewing position. Additionally, a prototype is implemented using a low-cost single-board computer, Raspberry Pi 4 B, its camera, and Python language. For automated broken stitch detection, a method is proposed that includes removing the texture of the background fabric, image processing in the HSV color space, and edge detection for robust broken detection under various fabric and thread colors and lighting conditions. The proposed system demonstrates reasonable real-time detection accuracy. The maximum accuracy obtained on a sewing stitch dataset with 880 images and on-site tests of various industrial sewing machines is 82.5%, which is 12.1–34.6% higher than that of the two existing methods.
: In this paper, we propose an improved single view metrology (SVM) algorithm to accurately measure the height of objects. In order to accurately measure the size of objects, vanishing points have to be correctly estimated. There are two methods to estimate vanishing points. First, the user has to choose some horizontal and vertical lines in real world. Then, the user finds the cross points of the lines. Second, the user can obtain the vanishing points by using software algorithm such as [6][7][8][9]. In the former method, the user has to choose the lines manually to obtain accurate vanishing points. On the other hand, the latter method uses software algorithm to automatically obtain vanishing points. In this paper, we apply image resizing and edge sharpening as a pre-processing to the algorithm in order to improve performance. The estimated vanishing points algorithm create four vanishing point candidates: two points are horizontal candidates and the other two points are vertical candidates. However, a common image has two horizontal vanishing points and one vertical vanishing point. Thus, we eliminate a vertical vanishing point candidate by analyzing the histogram of angle distribution of vanishing point candidates. Experimental results show that the proposed algorithm outperforms conventional methods, [6] and [7]. In addition, the algorithm obtains similar performance with manual method with less than 5% of the measurement error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.