In social network science, Facebook is one of the most interesting and widely used social networks and media platforms. Its data has significantly contributed to the evolution of social network research and link prediction techniques, which are important tools in link mining and analysis. This paper gives the first comprehensive analysis of link prediction on the Facebook100 network. We stu- dy performance and evaluate multiple machine learning algorithms on different feature sets. To derive the features, we use network embeddings and topology-based techniques such as node2vec and vectors of similarity metrics. In addition, we also employ node- -based features, which are available for the Facebook100 network, though rarely found in other datasets. The adopted approaches are discussed and results are clearly presented. Lastly, we compare and review the applied models, where overall performance and classification rates are presented.
In social network science, Facebook is one of the most interesting and widely used social networks and media platforms. Its data has significantly contributed to the evolution of social network research and link prediction techniques, which are important tools in link mining and analysis. This paper gives the first comprehensive analysis of link prediction on the Facebook100 network. We stu- dy performance and evaluate multiple machine learning algorithms on different feature sets. To derive the features, we use network embeddings and topology-based techniques such as node2vec and vectors of similarity metrics. In addition, we also employ node- -based features, which are available for the Facebook100 network, though rarely found in other datasets. The adopted approaches are discussed and results are clearly presented. Lastly, we compare and review the applied models, where overall performance and classification rates are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.