Pre-pregnancy maternal obesity is associated with adverse offspring outcomes at birth and later in life. Individual studies have shown that epigenetic modifications such as DNA methylation could contribute. Within the Pregnancy and Childhood Epigenetics (PACE) Consortium, we meta-analysed the association between pre-pregnancy maternal BMI and methylation at over 450,000 sites in newborn blood DNA, across 19 cohorts (9,340 mother-newborn pairs). We attempted to infer causality by comparing the effects of maternal versus paternal BMI and incorporating genetic variation. In four additional cohorts (1,817 mother-child pairs), we meta-analysed the association between maternal BMI at the start of pregnancy and blood methylation in adolescents. In newborns, maternal BMI was associated with small (<0.2% per BMI unit (1 kg/m2), P < 1.06 × 10−7) methylation variation at 9,044 sites throughout the genome. Adjustment for estimated cell proportions greatly attenuated the number of significant CpGs to 104, including 86 sites common to the unadjusted model. At 72/86 sites, the direction of the association was the same in newborns and adolescents, suggesting persistence of signals. However, we found evidence for a6causal intrauterine effect of maternal BMI on newborn methylation at just 8/86 sites. In conclusion, this well-powered analysis identified robust associations between maternal adiposity and variations in newborn blood DNA methylation, but these small effects may be better explained by genetic or lifestyle factors than a causal intrauterine mechanism. This highlights the need for large-scale collaborative approaches and the application of causal inference techniques in epigenetic epidemiology.
BackgroundCardiovascular diseases (CVD) mortality has been shown to follow a seasonal pattern. Several studies suggested several possible determinants of this pattern, including misclassification of causes of deaths. We aimed at assessing seasonality in overall, CVD, cancer and non-CVD/non-cancer mortality using data from 19 countries from different latitudes.Methods and FindingsMonthly mortality data were compiled from 19 countries, amounting to over 54 million deaths. We calculated ratios of the observed to the expected numbers of deaths in the absence of a seasonal pattern. Seasonal variation (peak to nadir difference) for overall and cause-specific (CVD, cancer or non-CVD/non-cancer) mortality was analyzed using the cosinor function model. Mortality from overall, CVD and non-CVD/non-cancer showed a consistent seasonal pattern. In both hemispheres, the number of deaths was higher than expected in winter. In countries close to the Equator the seasonal pattern was considerably lower for mortality from any cause. For CVD mortality, the peak to nadir differences ranged from 0.185 to 0.466 in the Northern Hemisphere, from 0.087 to 0.108 near the Equator, and from 0.219 to 0.409 in the Southern Hemisphere. For cancer mortality, the seasonal variation was nonexistent in most countries.ConclusionsIn countries with seasonal variation, mortality from overall, CVD and non-CVD/non-cancer show a seasonal pattern with mortality being higher in winter than in summer. Conversely, cancer mortality shows no substantial seasonality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.