Abstract-Research into cyberbullying detection has increased in recent years, due in part to the proliferation of cyberbullying across social media and its detrimental effect on young people. A growing body of work is emerging on automated approaches to cyberbullying detection. These approaches utilise machine learning and natural language processing techniques to identify the characteristics of a cyberbullying exchange and automatically detect cyberbullying by matching textual data to the identified traits. In this paper, we present a systematic review of published research (as identified via Scopus, ACM and IEEE Xplore bibliographic databases) on cyberbullying detection approaches. On the basis of our extensive literature review, we categorise existing approaches into 4 main classes, namely supervised learning, lexicon-based, rule-based, and mixed-initiative approaches. Supervised learning-based approaches typically use classifiers such as SVM and Naïve Bayes to develop predictive models for cyberbullying detection. Lexicon-based systems utilise word lists and use the presence of words within the lists to detect cyberbullying. Rule-based approaches match text to predefined rules to identify bullying, and mixed-initiatives approaches combine human-based reasoning with one or more of the aforementioned approaches. We found lack of labelled datasets and non-holistic consideration of cyberbullying by researchers when developing detection systems are two key challenges facing cyberbullying detection research. This paper essentially maps out the state-of-the-art in cyberbullying detection research and serves as a resource for researchers to determine where to best direct their future research efforts in this field.
Social media has become the new playground for bullies. Young people are now regularly exposed to a wide range of abuse online. In response to the increasing prevalence of cyberbullying, online social networks have increased efforts to clamp down on online abuse but unfortunately, the nature, complexity and sheer volume of cyberbullying means that many cyberbullying incidents go undetected. BullStop is a mobile app for detecting and preventing cyberbullying and online abuse on social media platforms. It uses deep learning models to identify instances of cyberbullying and can automatically initiate actions such as deleting offensive messages and blocking bullies on behalf of the user. Our system not only achieves impressive prediction results but also demonstrates excellent potential for use in real-world scenarios and is freely available on the Google Play Store.
In this paper, we introduce a new English Twitter-based dataset for online abuse and cyberbullying detection. Comprising 62,587 tweets, this dataset was sourced from Twitter using specific query terms designed to retrieve tweets with high probabilities of various forms of bullying and offensive content, including insult, profanity, sarcasm, threat, porn and exclusion. Analysis performed on the dataset confirmed common cyberbullying themes reported by other studies and revealed interesting relationships between the classes. The dataset was used to train a number of transformer-based deep learning models returning impressive results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.