Vertebrate Toll-like receptor 5 (TLR5) recognizes bacterial flagellin proteins and activates innate immune responses to motile bacteria. In addition, activation of TLR5 signaling can inhibit growth of TLR5-expressing tumors and protect normal tissues from radiation and ischemia-reperfusion injuries. To understand the mechanisms behind these phenomena at the organismal level, we assessed nuclear factor kappa B (NF-κB) activation (indicative of TLR5 signaling) in tissues and cells of mice treated with CBLB502, a pharmacologically optimized flagellin derivative. This identified the liver and gastrointestinal tract as primary CBLB502 target organs. In particular, liver hepatocytes were the main cell type directly and specifically responding to systemic administration of CBLB502 but not to that of the TLR4 agonist LPS. To assess CBLB502 impact on other pathways, we created multireporter mice with hepatocytes transduced in vivo with reporters for 46 inducible transcription factor families and found that along with NF-κB, CBLB502 strongly activated STAT3-, phenobarbital-responsive enhancer module (PREM), and activator protein 1 (AP-1-) -driven pathways. Livers of CBLB502-treated mice displayed induction of numerous immunomodulatory factors and massive recruitment of various types of immune cells. This led to inhibition of growth of liver metastases of multiple tumors regardless of their TLR5 status. The changed liver microenvironment was not, however, hepatotoxic, because CBLB502 induced resistance to Fas-mediated apoptosis in normal liver cells. Temporary occlusion of liver blood circulation prevented CBLB502 from protecting hematopoietic progenitors in lethally irradiated mice, indicating involvement of a factor secreted by responding liver cells. These results define the liver as the key mediator of TLR5-dependent effects in vivo and suggest clinical applications for TLR5 agonists as hepatoprotective and antimetastatic agents.breast cancer | colon cancer | neutrophils | natural killer cells | Salmonella T oll-like receptors (TLRs) recognize and are activated by specific patterns in molecules that are produced by a broad range of microbial pathogens but are not present in host molecules. Activation of TLRs by these pathogen-associated molecular patterns leads to induction of infection-fighting innate immune responses (1). Various TLR agonists have been considered for multiple clinical applications, including cancer immunotherapy (2-4), and one, the TLR7 agonist imiquimod, is approved for topical treatment of basal cell carcinoma (5).Although signaling pathways induced by different TLRs all result in mobilization of an innate immune response and involve activation of nuclear factor kappa B (NF-κB), the key regulator of immunity (6, 7), TLR5 is a particularly attractive candidate for therapeutic targeting for several reasons. First, bacterial flagellin, the natural ligand of TLR5, was found to have strong radioprotective effects in rodents and nonhuman primates (8). CBLB502 is a rationally designed derivative of Salmon...
Purpose Development of mucositis is a frequent side effect of radiotherapy of patients with head and neck cancer. We have recently reported that bacterial flagellin, an agonist of Toll-like receptor 5 (TLR5), can protect rodents and primates from acute radiation syndrome caused by total body irradiation (Burdelya et al., 2008, Science 320: 226-30). Here we analyzed the radioprotective efficacy of TLR5 agonist under conditions of local, single dose or fractionated radiation treatment. Methods and Materials Mice received either single-dose (10, 15, 20 or 25 Gy) or fractioned irradiation (cumulative dose up to 30 Gy) of the head and neck area with or without subcutaneous injection of pharmacologically optimized flagellin, CBLB502, 30 minutes prior to irradiation. Results CBLB502 significantly reduced the severity of dermatitis and mucositis, accelerated tissue recovery and reduced the extent of radiation induced weight loss in mice after a single dose of 15 or 20 Gy but not from 25 Gy of radiation. CBLB502 was also protective from cumulative doses of 25 and 30 Gy delivered in two (10+15 Gy) or three (3 × 10 Gy) fractions, respectively. While providing protection to normal epithelia, CBLB502 did not affect the radiosensitivity of syngeneic squamous carcinoma SCCVII grown orthotopically in mice. Use of CBLB502 also elicited a radiation independent growth inhibitory effect upon TLR5-expressing tumors demonstrated in the mouse xenograft model of human lung adenocarcinoma A549. Conclusion CBLB502 combines properties of supportive care (radiotherapy adjuvant) and anticancer agent, both mediated via activation of TLR5 signaling in the normal tissues or the tumor, respectively.
Studying the phenomenon of cellular senescence has been hindered by the lack of senescence-specific markers. As such, detection of proteins informally associated with senescence accompanies the use of senescence-associated β-galactosidase as a collection of semiselective markers to monitor the presence of senescent cells. To identify novel biomarkers of senescence, we immunized BALB/c mice with senescent mouse lung fibroblasts and screened for antibodies that recognized senescence-associated cell-surface antigens by FACS analysis and a newly developed cell-based ELISA. The majority of antibodies that we isolated, cloned, and sequenced belonged to the IgM isotype of the innate immune system. In-depth characterization of one of these monoclonal, polyreactive natural antibodies, the IgM clone 9H4, revealed its ability to recognize the intermediate filament vimentin. By using 9H4, we observed that senescent primary human fibroblasts express vimentin on their cell surface, and MS analysis revealed a posttranslational modification on cysteine 328 (C328) by the oxidative adduct malondialdehyde (MDA). Moreover, elevated levels of secreted MDA-modified vimentin were detected in the plasma of aged senescence-accelerated mouse prone 8 mice, which are known to have deregulated reactive oxygen species metabolism and accelerated aging. Based on these findings, we hypothesize that humoral innate immunity may recognize senescent cells by the presence of membrane-bound MDA-vimentin, presumably as part of a senescence eradication mechanism that may become impaired with age and result in senescent cell accumulation.aging | oxidative posttranslational modifications | biomarker | SAMP8 | malondialdehyde
SummaryThe c-type cytochromes are haemoproteins that are subunits or physiological partners of electron transport chain components, like the cytochrome bc1 complex or the cbb3-type cytochrome c oxidase. Their haem moieties are covalently attached to the corresponding apocytochromes via a complex posttranslational maturation process. During our studies of cytochrome biogenesis, we uncovered a novel class of mutants that are unable to produce ornithine lipid and that lack several c-type cytochromes. Molecular analyses of these mutants led us to the ornithine lipid biosynthesis genes of Rhodobacter capsulatus. Herein, we have characterized these mutants, and established the chemical structure of this non-phosphorus membrane lipid from R. capsulatus. Ornithine lipids are known to induce potent host immune responses, including B-lymphocyte mitogenicity, adjuvanticity and macrophage activation. Yet, despite their widespread occurrence in Eubacteria, and the diverse biological effects they elicit in mammals, their physiological role in bacterial cells remained hitherto poorly defined. Our findings now indicate that under certain bacterial growth conditions ornithine lipids are crucial for optimal steady-state amounts of some extracytoplasmic proteins, including several c-type cytochromes, and attribute them a novel and important biological function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.