A nonlinear finite element model for axisymmetric bending of micro circular/annular plates under thermal and mechanical loading was developed using quasi-3D Reddy third-order shear deformation theory. The developed finite element model accounts for a variation of material constituents utilizing a power-law distribution of a two-constituent material, three different porosity distributions through plate thickness, and geometrical nonlinearity. The modified couple stress theory was utilized to account for the strain gradient effects using a single material length scale parameter. Three different types of porosity distributions that have the same overall volume fraction but different enhanced areas were considered as a form of cosine functions. The effects of the material and porosity distribution, microstructure-dependency, the geometric nonlinearity, and various boundary conditions on the bending response of functionally-graded porous axisymmetric microplates under thermomechanical loads were studied using the developed nonlinear finite element model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.