A tangible substituent effect may be perceived as a good feature in developing an organic reaction. This work demonstrates that, on the contrary, a zero-slope Hammet plot should be sought. The synthesis of isoxazoles by consecutive cycloaddition of nitrile oxides to vinyl ethers and alcohols elimination was studied computationally and experimentally. We performed a Hammett study in silico to demonstrate a negligible substituent effect (i. e., broad substrate scope) in the addition of benzyl vinyl ether to nitrile oxides. The modeling was performed at the ωB97X-V/def2-TZVP//PBE0-D4/def2-TZVP + SMD(benzene) level of theory within the RIJCOSX approximation. The experimental evaluation validated the computational model. A versatile methodology for synthesizing substituted isoxazolines and isoxazoles was proposed as the main result. We present this work as a successful example of how quantum chemical modeling can re-boost the classic Hammett approach to the optimization and design of organic synthetic methodologies. We anticipate further Hammett studies in silico, considering the current trend for data-driven chemical research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.