Polyanion compounds offer a playground for designing prospective electrode active materials for sodium-ion storage due to their structural diversity and chemical variety. Here, by combining a NaVPO4F composition and KTiOPO4-type framework via a low-temperature (e.g., 190 °C) ion-exchange synthesis approach, we develop a high-capacity and high-voltage positive electrode active material. When tested in a coin cell configuration in combination with a Na metal negative electrode and a NaPF6-based non-aqueous electrolyte solution, this cathode active material enables a discharge capacity of 136 mAh g−1 at 14.3 mA g−1 with an average cell discharge voltage of about 4.0 V. Furthermore, a specific discharge capacity of 123 mAh g−1 at 5.7 A g−1 is also reported for the same cell configuration. Through ex situ and operando structural characterizations, we also demonstrate that the reversible Na-ion storage at the positive electrode occurs mostly via a solid-solution de/insertion mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.