Since its discovery in the Hubei province of China, the global spread of the novel coronavirus SARS-CoV-2 has resulted in millions of COVID-19 cases and hundreds of thousands of deaths. The spread throughout Asia, Europe, and the Americas has presented one of the greatest infectious disease threats in recent history and has tested the capacity of global health infrastructures. Since no effective vaccine is available, isolation techniques to prevent infection such as home quarantine and social distancing while in public have remained the cornerstone of public health interventions. While government and health officials were charged with implementing stay-at-home strategies, many of which had little guidance as to the consequences of how quickly to begin them. Moreover, as the local epidemic curves have been flattened, the same officials must wrestle with when to ease or cease such restrictions as to not impose economic turmoil. To evaluate the effects of quarantine strategies during the initial epidemic, an agent based modeling framework was created to take into account local spread based on geographic and population data with a corresponding interactive desktop and web-based application. Using the state of Massachusetts in the United States of America, we have illustrated the consequences of implementing quarantines at different time points after the initial seeding of the state with COVID-19 cases. Furthermore, we suggest that this application can be adapted to other states, small countries, or regions within a country to provide decision makers with critical information necessary to best protect human health.
Since its discovery in the Hubei province of China, the global spread of the novel coronavirus SARS-CoV-2 has resulted in millions of COVID-19 cases and hundreds of thousands of deaths. The spread throughout Asia, Europe, and the Americas has presented one of the greatest infectious disease threats in recent history and has tested the capacity of global health infrastructures. Since no effective vaccine is available, isolation techniques to prevent infection such as home quarantine and social distancing while in public have remained the cornerstone of public health interventions. While government and health officials were charged with implementing stay-at-home strategies, many of which had little guidance as to the consequences of how quickly to begin them. Moreover, as the local epidemic curves have been flattened, the same officials must wrestle with when to ease or cease such restrictions as to not impose economic turmoil. To evaluate the effects of quarantine strategies during the initial epidemic, an agent based modeling framework was created to take into account local spread based on geographic and population data with a corresponding interactive desktop and web-based application. Using the state of Massachusetts in the United States of America, we have illustrated the consequences of implementing quarantines at different time points after the initial seeding of the state with COVID-19 cases. Furthermore, we suggest that this application can be adapted to other states, small countries, or regions within a country to provide decision makers with critical information necessary to best protect human health.
Background The SARS-CoV-2 virus caused a worldwide pandemic – although none of its predecessors from the coronavirus family ever achieved such a scale. The key to understanding the global success of SARS-CoV-2 is hidden in its genome. Materials and methods We retrieved data for 329,942 SARS-CoV-2 records uploaded to the GISAID database from the beginning of the pandemic until the January 8, 2021. A Python variant detection script was developed to process the data using pairwise2 from the BioPython library. Sequence alignments were performed for every gene separately (except ORF1ab, which was not studied). Genomes less than 26,000 nucleotides long were excluded from the research. Clustering was performed using HDBScan. Results Here, we addressed the genetic variability of SARS-CoV-2 using 329,942 samples. The analysis yielded 155 SNPs and deletions in more than 0.3% of the sequences. Clustering results suggested that a proportion of people (2.46%) was infected with a distinct subtype of the B.1.1.7 variant, which contained four to six additional mutations (G28881A, G28882A, G28883С, A23403G, A28095T, G25437T). Two clusters were formed by mutations in the samples uploaded predominantly by Denmark and Australia (1.48% and 2.51%, respectively). A correlation coefficient matrix detected 160 pairs of mutations (correlation coefficient greater than 0.7). We also addressed the completeness of the GISAID database, patient gender, and age. Finally, we found ORF6 and E to be the most conserved genes (96.15% and 94.66% of the sequences totally match the reference, respectively). Our results indicate multiple areas for further research in both SARS-CoV-2 studies and health science.
With the novel coronavirus 19 (COVID-19) continually having a devastating effect around the globe, many scientists and clinicians are actively seeking to develop new techniques to assist with the tackling of this disease. Modern machine learning methods have shown promise in their adoption to assist the health care industry through their data and analytics-driven decision making, inspiring researchers to develop new angles to fight the virus. In this paper, we aim to develop a robust method for the detection of COVID-19 by utilizing patients' chest X-ray images. Despite recent progress, scarcity of data has thus far limited the development of a robust solution. We extend upon existing work by combing publicly available data across 5 different sources and carefully annotating the comprising images into three categories: normal, pneumonia, and COVID-19. To achieve a high classification accuracy, we propose a training pipeline based on the directed guidance of traditional classification networks, where the guidance is directed by an external segmentation network. Through this network, we observed that the widely used, standard networks can achieve an accuracy comparable to tailor-made models specifically for COVID-19, furthermore one network, VGG-16, outperformed the best of the tailor-made models.
The novel coronavirus 19 (COVID-19) continues to have a devastating effect around the globe, leading many scientists and clinicians to actively seek to develop new techniques to assist with the tackling of this disease. Modern machine learning methods have shown promise in their adoption to assist the healthcare industry through their data and analytics-driven decision making, inspiring researchers to develop new angles to fight the virus. In this paper, we aim to develop a CNN-based method for the detection of COVID-19 by utilizing patients' chest X-ray images. Developing upon the inclusion of convolutional units, the proposed method makes use of indirect supervision based on Grad-CAM. This technique is used in the training process where Grad-CAM's attention heatmaps support the network's predictions. Despite recent progress, scarcity of data has thus far limited the development of a robust solution. We extend upon existing work by combining publicly available data across 5 different sources and carefully annotate the comprising images across three categories: normal, pneumonia, and COVID-19. To achieve a high classification accuracy, we propose a training pipeline based on indirect supervision of traditional classification networks, where the guidance is directed by an external algorithm. With this method, we observed that the widely used, standard networks can achieve an accuracy comparable to tailor-made models, specifically for COVID-19, with one network in particular, VGG-16, outperforming the best of the tailor-made models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.