Phenytoin and carbamazepine are effective and inexpensive antiepileptic drugs (AEDs). As with many AEDs, a broad range of doses is used, with the final ''maintenance'' dose normally determined by trial and error. Although many genes could influence response to these medicines, there are obvious candidates. Both drugs target the ␣-subunit of the sodium channel, encoded by the SCN family of genes. Phenytoin is principally metabolized by CYP2C9, and both are probable substrates of the drug transporter P-glycoprotein. We therefore assessed whether variation in these genes associates with the clinical use of carbamazepine and phenytoin in cohorts of 425 and 281 patients, respectively. We report that a known functional polymorphism in CYP2C9 is highly associated with the maximum dose of phenytoin (P ؍ 0.0066). We also show that an intronic polymorphism in the SCN1A gene shows significant association with maximum doses in regular usage of both carbamazepine and phenytoin (P ؍ 0.0051 and P ؍ 0.014, respectively). This polymorphism disrupts the consensus sequence of the 5 splice donor site of a highly conserved alternative exon (5N), and it significantly affects the proportions of the alternative transcripts in individuals with a history of epilepsy. These results provide evidence of a drug target polymorphism associated with the clinical use of AEDs and set the stage for a prospective evaluation of how pharmacogenetic diagnostics can be used to improve dosing decisions in the use of phenytoin and carbamazepine. Although the case made here is compelling, our results cannot be considered definitive or ready for clinical application until they are confirmed by independent replication. association study ͉ epilepsy ͉ pharmacogenetics P henytoin and carbamazepine are important first-line antiepileptic drugs (AEDs) and are widely prescribed throughout the world. Control of epilepsy with phenytoin can be a difficult and lengthy process because of the drug's narrow therapeutic index and the wide interindividual range of doses required. Similarly, appropriate doses for carbamazepine take time to determine because of autoinduction of metabolism and neurologic side effects generally assumed to necessitate slow dose increases. Adverse drug reactions (ADRs) are relatively common for both drugs.Phenytoin is metabolized by the hepatic cytochrome P450 enzymes CYP2C9 and CYP2C19, is transported by Pglycoprotein, and targets the ␣-subunit of the sodium channel.
No abstract
Type I (IFN-α/β) and type III (IFN-λ) interferons (IFNs) exert shared antiviral activities through distinct receptors. However, their relative importance for antiviral protection of different organ systems against specific viruses remains to be fully explored. We used mouse strains deficient in type-specific IFN signaling, STAT1 and Rag2 to dissect distinct and overlapping contributions of type I and type III IFNs to protection against homologous murine (EW-RV strain) and heterologous (non-murine) simian (RRV strain) rotavirus infections in suckling mice. Experiments demonstrated that murine EW-RV is insensitive to the action of both types of IFNs, and that timely viral clearance depends upon adaptive immune responses. In contrast, both type I and type III IFNs can control replication of the heterologous simian RRV in the gastrointestinal (GI) tract, and they cooperate to limit extra-intestinal simian RRV replication. Surprisingly, intestinal epithelial cells were sensitive to both IFN types in neonatal mice, although their responsiveness to type I, but not type III IFNs, diminished in adult mice, revealing an unexpected age-dependent change in specific contribution of type I versus type III IFNs to antiviral defenses in the GI tract. Transcriptional analysis revealed that intestinal antiviral responses to RV are triggered through either type of IFN receptor, and are greatly diminished when receptors for both IFN types are lacking. These results also demonstrate a murine host-specific resistance to IFN-mediated antiviral effects by murine EW-RV, but the retention of host efficacy through the cooperative action by type I and type III IFNs in restricting heterologous simian RRV growth and systemic replication in suckling mice. Collectively, our findings revealed a well-orchestrated spatial and temporal tuning of innate antiviral responses in the intestinal tract where two types of IFNs through distinct patterns of their expression and distinct but overlapping sets of target cells coordinately regulate antiviral defenses against heterologous or homologous rotaviruses with substantially different effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.