A resonator coupler for subcutaneous implants has been developed with a new impedance matching pattern added to the conventional loop antenna. The tuning element of a concentric metal pad contributes distributed capacitance and inductance to the planar inductive loop and improves resonance significantly. It provides a better qualify factor for resonant coupling and a much lower reflection coefficient for the implant electronics. Practical constraints are taken into account for designs including the requirement of operation within a regulated frequency band and the limited thickness for a monolithic implant. In this work, two designs targeting to operate in the two industrial, scientific, and medical (ISM) bands at 903 MHz and 2.45 GHz are considered. The tuning metal pad improves their resonances significantly, compared to the conventional loop designs. Since it is difficult to tune the implant antenna after implantation, the effects of tissue depth variations due to the individual’s surgery and the appropriate implant depths are investigated. Simulations conducted with the dielectric properties of human skin documented in the literature are compared to measurements done with hydrated ground pork as phantoms. Experiments and simulations are conducted to explain the discrepancies in frequency shifts due to the uses of pork phantoms. The design method is thus validated for uses on human skin. A noninvasive localization method to identify the implant under the skin has been examined and demonstrated by both simulations and measurements. It can efficiently locate the subcutaneous implant based on the high quality-factor resonance owing to the tuning elements in both implant and transmitter couplers. The planar resonant coupler for wireless power transfer shows good performance and promise in subcutaneous applications for implants.
BackgroundCardiovascular diseases (CVD), including coronary heart disease (CHD), heart failure, ischemic heart disease (IHD), and atrial fibrillation, are prevalent in the aged. However, the influence of CVD on ED is less investigated. This study was performed to clarify the causal association between CVD and ED.Materials and methodsGenome-wide association studies (GWAS) datasets targeting CHD, heart failure, IHD, and atrial fibrillation were downloaded to retrieve single nucleotide polymorphisms (SNPs). Further, single-variable Mendelian randomization and multivariable Mendelian randomization (MVMR) were adopted to explore the causal association between CVD and ED.ResultsGenetically predicted CHD and heart failure were found to increase the risks of ED (OR = 1.09, P < 0.05 and OR = 1.36, P < 0.05, respectively). However, no causal association was disclosed among IHD, atrial fibrillation and ED (all P > 0.05). These findings remained consistent in sensitivity analyses. After controlling for body mass index, alcohol, low density lipoprotein, smoking and total cholesterol levels, the results of MVMR support the causal role of CHD on ED (P < 0.05). Similarly, the direct causal effect estimates of heart failure on ED were significant in MVMR analyses (P < 0.05).ConclusionUsing genetic data, this study revealed that genetically predicted CHD and heart failure may predict better ED compared with atrial fibrillation and IHD. The results should be interpreted with caution and the insignificant causal inference of IHD still needs further verification in future studies.
The equivalency of pH measurements between aqueous and non-aqueous or viscous solutions is of great interest in biomedical applications as well for processing food and pharmaceuticals. Commercial glass-type electrodes have practical limitations, such as bulky sizes and membrane clogging in viscous environments. In this study, planar and flexible electrochemical pH sensors with iridium oxide as the sensing film have been developed by sol-gel and oxidation processes. A reference electrode was prepared by screen printing Ag/AgCl ink on the same polyimide substrate. The small form factors of the planar flexible electrodes provide an advantage in small volume or conformal surface measurements. Cyclic voltammetry was performed in different pH solutions. The electrode originally produced a response of −70.1 mV/pH at room temperature in aqueous solutions. The sensitivities were reduced when salt was added into the buffer solutions, although output potentials were increased. Sensing performances in a wide range of viscous conditions with various concentrations of added salt have been analyzed to study their effects on pH-sensing responses. Suitable calibration techniques using aqueous buffer solutions were studied for output potentials and their respective pH readings in viscous salt-added solutions. The mechanisms affecting output potentials are explained and results matched well for two different thickening agents. Specificity to pH changes measured by the planar IrOx-Ag/AgCl pH electrodes showed how the potential-pH calibration should consider the interference effect of salt. The viscosity effects on pH reading errors became more pronounced as solution viscosity increased. Comparisons of pH readings to those from a commercial glass-bodied pH meter indicated that the planar electrodes provided predictable pH deviations that were confined to a limited range. The planar IrOx-Ag/AgCl electrodes on flexible polyimide substrates have mostly been demonstrated with aqueous solutions in various diagnostic and environmental monitoring applications. This work provides more insights into pH sensing performance when the fluid is viscous and contains salt, which often is the case in biomedical and food-processing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.