The application of biosorption in the removal of heavy metals from water faces a challenge of safe disposal of contaminated biomass. In this study, a potential solution for this problem was proposed by using a biosorption-pyrolysis process featured by pretreatment of biomass with phosphoric acid (PA). The PA pretreatment of biomass increased the removal efficiency of heavy metal Pb from water by sorption, and subsequent pyrolysis helped immobilize Pb in the residual char. The results indicate that most (>95%) of the Pb adsorbed by the PA-pretreated biomass was retained in the char, and that the lower pyrolysis temperature (350°C) is more favorable for Pb immobilization. In this way, the bioavailable Pb in the char was hardly detected, while the Pb leachable in acidic solution decreased to <3% of total Pb in the char. However, higher pyrolysis temperature (450 °C) is unfavorable for Pb immobilization, as both the leachable and bioavailable Pb increased to >28%. The reason should be related to the formation of elemental Pb and unstable Pb compounds during pyrolysis at 450 °C, according to the X-ray diffraction study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.