Enzymes controlling intracellular second messengers in bacteria, such as c-di-GMP, often affect some but not other targets. How such specificity is achieved is understood only partially. Here, we present a novel mechanism that enables specific c-di-GMP-dependent inhibition of the antifungal antibiotic production. Expression of the biosynthesis operon for Heat-Stable Antifungal Factor, HSAF, in Lysobacter enzymogenes occurs when the transcription activator Clp binds to two upstream sites. At high c-di-GMP levels, Clp binding to the lower-affinity site is compromised, which is sufficient to decrease gene expression. We identified a weak c-di-GMP phosphodiesterase, LchP, that plays a disproportionately high role in HSAF synthesis due to its ability to bind Clp. Further, Clp binding stimulates phosphodiesterase activity of LchP. An observation of a signaling complex formed by a c-di-GMP phosphodiesterase and a c-di-GMP-binding transcription factor lends support to the emerging paradigm that such signaling complexes are common in bacteria, and that bacteria and eukaryotes employ similar solutions to the specificity problem in second messenger-based signaling systems.
The solubility of 4-nitrophthalimide in different solvents are of great importance for the design of its purification process via crystallization. The work reported new solubility data for 4-nitrophthalimide in 12 pure solvents of methanol, ethanol, isopropanol, cyclohexanone, acetone, acetonitrile, ethyl acetate, 2-butanone, chloroform, 1,4-dioxane benzyl alcohol and N,N-dimethylformamide. They were determined by a high-performance liquid chromatography at T = (273.15 to 323.15) K under pressure of 0.1 MPa. The 4-nitrophthalimide solubility in the selected solvents increased with the temperature increase. At a given temperature, the solubility of 4-nitrophthalimide is largest in N,N-dimethylformamide and lowest in chloroform. The solubility data in the these solvents ranked as N,Ndimethylformamide > cyclohexanone > (1,4-dioxane, acetone, 2-butanone, benzyl alcohol) > ethyl acetate > acetonitrile > methanol > ethanol > isopropanol > chloroform. The experimental solubility data were correlated by modified Apelblat equation, λh equation, Wilson model, and NRTL model. The obtained values of root-mean-square deviation and relative average deviation are all less than 16.17 × 10 −4 and 1.58%, respectively. The modified Apelblat equation achieved the best correlating results in totally.
YajQ, a binding protein of the universal bacterial second messenger cyclic di-GMP (c-di-GMP), affects virulence in several bacterial pathogens, including Xanthomonas campestris. In this bacterium, YajQ interacts with the transcription factor LysR. Upon c-di-GMP binding, the whole c-di-GMP-YajQ-LysR complex is found to dissociate from DNA, resulting in virulence gene regulation. Here, we identify a YajQ-LysR-like system in the bacterial biocontrol agent Lysobacter enzymogenes OH11 that secretes an antifungal antibiotic, heat-stable antifungal factor (HSAF) against crop fungal pathogens. We show that the YajQ homologue, CdgL (c-di-GMP receptor interacting with LysR) affects expression of the HSAF biosynthesis operon by interacting with the transcription activator LysR. The CdgL-LysR interaction enhances the apparent affinity of LysR to the promoter region upstream of the HSAF biosynthesis operon, which increases operon expression. Unlike the homologues CdgL (YajQ)-LysR system in X. campestris, we show that c-di-GMP binding to CdgL seems to weaken CdgL-LysR interactions and promote the release of CdgL from the LysR-DNA complex, which leads to decreased expression. Together, this study takes the YajQ-LysR-like system from bacterial pathogens to a crop-protecting bacterium that is able to regulate antifungal HSAF biosynthesis via disassembly of the c-di-GMP receptortranscription activator complex.
Although amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, was first described in 1874, a flurry of genetic discoveries in the last 10 years has markedly increased our understanding of this disease. These findings have not only enhanced our knowledge of mechanisms leading to ALS, but also have revealed that ALS shares many genetic causes with another neurodegenerative disease, frontotemporal lobar dementia (FTLD). In this review, we survey how recent genetic studies have bridged our mechanistic understanding of these two related diseases and how the genetics behind ALS and FTLD point to complex disorders, implicating non-neuronal cell types in disease pathophysiology. The involvement of non-neuronal cell types is consistent with a non-cell autonomous component in these diseases. This is further supported by studies that identified a critical role of immune-associated genes within ALS/FTLD and other neurodegenerative disorders. The molecular functions of these genes support an emerging concept that various non-autonomous functions are involved in neurodegeneration. Further insights into such a mechanism(s) will ultimately lead to a better understanding of potential routes of therapeutic intervention. Facts ALS and FTLD are severe neurodegenerative disorders on the same disease spectrum. Multiple cellular processes including dysregulation of RNA homeostasis, imbalance of proteostasis, contribute to ALS/FTLD pathogenesis. Aberrant function in non-neuronal cell types, including microglia, contributes to ALS/FTLD. Strong neuroimmune and neuroinflammatory components are associated with ALS/FTLD patients. Open Questions Why can patients with similar mutations have different disease manifestations, i.e., why do C9ORF72 mutations lead to motor neuron loss in some patients while others exhibit loss of neurons in the frontotemporal lobe? Do ALS causal mutations result in microglial dysfunction and contribute to ALS/FTLD pathology? How do microglia normally act to mitigate neurodegeneration in ALS/FTLD? To what extent do cellular signaling pathways mediate non-cell autonomous communications between distinct central nervous system (CNS) cell types during disease? Is it possible to therapeutically target specific cell types in the CNS?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.