Hyperspectral unmixing is a crucial preprocessing step for material classification and recognition. In the last decade, nonnegative matrix factorization (NMF) and its extensions have been intensively studied to unmix hyperspectral imagery and recover the material end-members. As an important constraint for NMF, sparsity has been modeled making use of the L1 regularizer. Unfortunately, the L1 regularizer cannot enforce further sparsity when the full additivity constraint of material abundances is used, hence, limiting the practical efficacy of NMF methods in hyperspectral unmixing. In this paper, we extend the NMF method by incorporating the L 1/2 sparsity constraint, which we name L 1/2 -NMF. The L 1/2 regularizer not only induces sparsity, but is also a better choice among Lq(0 < q < 1) regularizers. We propose an iterative estimation algorithm for L 1/2 -NMF, which provides sparser and more accurate results than those delivered using the L1 norm. We illustrate the utility of our method on synthetic and real hyperspectral data and compare our results to those yielded by other state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.