Saliency prediction can benefit from training that involves scene understanding that may be tangential to the central task; this may include understanding places, spatial layout, objects or involve different datasets and their bias. One can combine models, but to do this in a sophisticated manner can be complex, and also result in unwieldy networks or produce competing objectives that are hard to balance. In this paper, we propose a scalable system to leverage multiple powerful deep CNN models to better extract visual features for saliency prediction. Our design differs from previous studies in that the whole system is trained in an almost end-to-end piece-wise fashion. The encoder and decoder components are separately trained to deal with complexity tied to the computational paradigm and required space. Furthermore, the encoder can contain more than one CNN model to extract features, and models can have different architectures or be pre-trained on different datasets. This parallel design yields a better computational paradigm overcoming limits to the variety of information or inference that can be combined at the encoder stage towards deeper networks and a more powerful encoding. Our network can be easily expanded almost without any additional cost, and other pre-trained CNN models can be incorporated availing a wider range of visual knowledge. We denote our expandable multi-layer network as EML-NET and our method achieves the state-of-the-art results on the public saliency benchmarks, SALICON, MIT300 and CAT2000.
Feminist news media researchers have long contended that masculine news values shape journalists’ quotidian decisions about what is newsworthy. As a result, it is argued, topics and issues traditionally regarded as primarily of interest and relevance to women are routinely marginalised in the news, while men’s views and voices are given privileged space. When women do show up in the news, it is often as “eye candy,” thus reinforcing women’s value as sources of visual pleasure rather than residing in the content of their views. To date, evidence to support such claims has tended to be based on small-scale, manual analyses of news content. In this article, we report on findings from our large-scale, data-driven study of gender representation in online English language news media. We analysed both words and images so as to give a broader picture of how gender is represented in online news. The corpus of news content examined consists of 2,353,652 articles collected over a period of six months from more than 950 different news outlets. From this initial dataset, we extracted 2,171,239 references to named persons and 1,376,824 images resolving the gender of names and faces using automated computational methods. We found that males were represented more often than females in both images and text, but in proportions that changed across topics, news outlets and mode. Moreover, the proportion of females was consistently higher in images than in text, for virtually all topics and news outlets; women were more likely to be represented visually than they were mentioned as a news actor or source. Our large-scale, data-driven analysis offers important empirical evidence of macroscopic patterns in news content concerning the way men and women are represented.
When analysing human activities using data mining or machine learning techniques, it can be useful to infer properties such as the gender or age of the people involved. This paper focuses on the sub-problem of gender recognition, which has been studied extensively in the literature, with two main problems remaining unsolved: how to improve the accuracy on real-world face images, and how to generalise the models to perform well on new datasets. We address these problems by collecting five million weakly labelled face images, and performing three different experiments, investigating: the performance difference between convolutional neural networks (CNNs) of differing depths and a support vector machine approach using local binary pattern features on the same training data; the effect of contextual information on classification accuracy; and the ability of convolutional neural networks and large amounts of training data to generalise to cross-database classification. We report record-breaking results on both the Labeled Faces in the Wild (LFW) dataset, achieving an accuracy of 98.90%, and the Images of Groups (GROUPS) dataset, achieving an accuracy of 91.34% for cross-database gender classification.
In this paper, we proposed a novel method for No-Reference Image Quality Assessment (NR-IQA) by combining deep Convolutional Neural Network (CNN) with saliency map. We first investigate the effect of depth of CNNs for NR-IQA by comparing our proposed ten-layer Deep CNN (DCNN) for NR-IQA with the state-of-the-art CNN architecture proposed by Kang et al. (2014). Our results show that the DCNN architecture can deliver a higher accuracy on the LIVE dataset. To mimic human vision, we introduce saliency maps combining with CNN to propose a Saliency-based DCNN (SDCNN) framework for NR-IQA. We compute a saliency map for each image and both the map and the image are split into small patches. Each image patch is assigned with a patch importance value based on its saliency patch. A set of Salient Image Patches (SIPs) are selected according to their saliency and we only apply the model on those SIPs to predict the quality score for the whole image. Our experimental results show that the SDCNN framework is superior to other state-of-the-art approaches on the widely used LIVE dataset. The TID2008 and the CISQ image quality datasets are utilised to report cross-dataset results. The results indicate that our proposed SDCNN can generalise well on other datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.