The fluid mixing characteristics in the bath during the side and top combined blowing AOD (argon-oxygen decarburization) refining process of stainless steel were preliminarily investigated on a water model unit of a 120 t AOD converter. The geometric similarity ratio between the model and its prototype (including the side tuyeres and the top lances) was 1:4. On the basis of the theoretical calculations for the parameters of the gas streams in the side tuyeres and the top lances, the gas blowing rates used for the model were more reasonably determined. The influence of the tuyere number and position arrangement, and the gas flow rates for side and top blowing on the characteristics was examined. The results demonstrated that the liquid in the bath underwent vigorous circulatory motion during gas blowing, without obvious dead zone in the bath, resulting in a high mixing effectiveness. The gas flow rate of the main tuyere had a governing role on the characteristics, a suitable increase in the gas flow rate of the subtuyere could improve mixing efficiency, and the gas jet from the top lance made the mixing time prolong. Corresponding to the oxygen top blowing rate specified by the technology, a roughly equivalent and good mixing effectiveness could be reached by using six side tuyeres with an angle of 27 degrees between each tuyere, and five side tuyeres with an angular separation of 22.5 or 27 degrees between each tuyere. The relationships of the mixing time with the gas blowing rates of main-tuyeres and sub-tuyeres and top lance, the angle between each tuyere, and the tuyere number were evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.