Ionic liquids are salts found in their liquid state at ambient temperature. The physicochemical properties of ionic liquids can be tailored by selecting constituent cation and anion from numerous available ions. The physicochemical properties can be further tuned by mixing different neat ionic liquids. Reported data of ionic liquid mixtures reveal that frequently investigated properties such as density, viscosity, and thermal stability follow corresponding mixing laws. Complex permittivity in the interval of terahertz frequencies is of great importance to understand the molecular interactions and the solvation dynamics which drive the macroscopic properties of ionic liquids; however, to the best of our knowledge, there are few reports about the mixing behavior of complex permittivity in ionic liquid mixtures. In this contribution, binary mixtures of 1-butyl-3-methylimidazoulium iodide ([C4C1im]I) and 1-butyl-3- methylimidazoulium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]) are investigated in the terahertz spectral range, and the resulting low-energy spectra are analyzed in order to clarify the mixing laws at play. The results show that the complex permittivity of mixtures of [C4C1im]I and ([C4C1im][NTf2] obeys a linear mixing law.
Terahertz (THz) technology is a promising research field for various applications in basic science and technology. In particular, THz imaging is a new field in imaging science, where theories, mathematical models and techniques for describing and assessing THz images have not completely matured yet. In this work, we investigate the performances of a broadband pulsed THz imaging system (0.2–2.5 THz). We characterize our broadband THz beam, emitted from a photoconductive antenna (PCA), and estimate its point spread function (PSF) and the corresponding spatial resolution. We provide the first, to our knowledge, 3D beam profile of THz radiation emitted from a PCA, along its propagation axis, without the using of THz cameras or profilers, showing the beam spatial intensity distribution. Finally, we evaluate the THz image formation on a test-sample composed by a regular linen natural pattern.
Ionic liquids are liquid salts at ambient temperature composed of organic cations and organic/inorganic anions. Outstanding physical and chemical properties of ionic liquids lead to increasing application in scientific and industrial field. Ionic liquids have been already investigated by different spectroscopic techniques, including terahertz (THz) time-domain spectroscopy. The usual THz frequency range extends up to 2-3 THz, a relatively narrow band, which can only show the intermolecular vibrational modes. Here, we report about broadband THz spectroscopy of ionic liquids up to 13 THz. Bandwidth of intermolecular absorption band presents an unexpected behavior and strong sharp intramolecular absorptions are shown. In addition, we found violation of the approximation of harmonic oscillator used to predict the peak shift of intermolecular absorption band.
The diffusion of light by random materials is a general phenomenon that appears in many different systems, spanning from colloidal suspension in liquid crystals to disordered metal sponges and paper composed of random fibers. Random scattering is also a key element behind mimicry of several animals, such as white beetles and chameleons. Here, random scattering is related to micro and nanosized spatial structures affecting a broad electromagnetic region. In this work, we have investigated how random scattering modulates the optical properties, from terahertz to ultraviolet light, of a novel functional material, i.e., a three-dimensional graphene (3D Graphene) network based on interconnected high-quality two-dimensional graphene layers. Here, random scattering generates a high-frequency pass-filter behavior. The optical properties of these graphene structures bridge the nanoworld into the macroscopic world, paving the way for their use in novel optoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.