The terminal t-loop structure adopted by mammalian telomeres is thought to prevent telomeres from being recognized as double-stranded DNA breaks by sequestering the 3' single-stranded G-rich overhang from exposure to the DNA damage machinery. The POT1 (protection of telomeres) protein binds the single-stranded overhang and is required for both chromosomal end protection and telomere length regulation. The mouse genome contains two POT1 orthologs, Pot1a and Pot1b. Here we show that conditional deletion of Pot1a elicits a DNA damage response at telomeres, resulting in p53-dependent replicative senescence. Pot1a-deficient cells exhibit overall telomere length and 3' overhang elongation as well as aberrant homologous recombination (HR) at telomeres, manifested as increased telomere sister chromatid exchanges and formation of telomere circles. Telomeric HR following Pot1a loss requires NBS1. Pot1a deletion also results in chromosomal instability. Our results suggest that POT1a is crucial for the maintenance of both telomere integrity and overall genomic stability.
A model of human prostate cancer was established to study cellular interaction between prostate cancer and bone stroma in vivo. In this model, subcutaneous co-injection of 2 non-tumorigenic human cell lines--LNCaP, a prostate cancer cell line, and MS, a bone stromal cell-line--into intact adult male mice resulted in formation of carcinomas that secreted prostate-specific antigen (PSA), a clinically useful human serum prostate cancer marker. In castrated hosts, upon cellular interaction with bone fibroblasts, we observed the progression of these tumors from an androgen-dependent (AD) to an androgen-independent state (AI). We derived 4 LNCaP cell sublines from the chimeric LNCaP/MS tumors: the M subline from intact hosts and the C4, C4-2 and C5 sublines from castrated hosts. The LNCaP sublines had chromosomal markers similar to those of the parental LNCaP cells and distinctly different from those of the MS bone stromal cell line. Although the parental and derived cell lines expressed similar steady-state levels of ornithine decarboxylase transcript, the sublines expressed 5- to 10-fold higher basal steady-state levels of PSA transcript than did the parental LNCaP cell line. The LNCaP sublines formed 13- to 26-fold more soft-agar colonies than the parental LNCaP cell line. The sublines became tumorigenic, yielding an incidence of tumors in intact athymic mice of 7-75%. The LNCaP sublines C4 and C5 (but not the parental and M cell line) formed tumors in castrated hosts when co-injected with bone fibroblasts. A second-generation LNCaP subline, C4-2, was derived from a chimeric tumor induced by co-inoculating castrated mouse with C4 cells and MS cells. We found that C4-2 subline was tumorigenic when inoculated into castrated hosts in the absence of inductive fibroblasts. Moreover, C4-2 was the only subline capable of forming soft-agar colonies when cultured in serum-free medium. In comparison with the parental LNCaP cells, the C4-2 subline expressed lower steady-state levels of androgen receptor (AR) protein and mRNA transcript and lost its androgen responsiveness in vitro. Our results suggest that certain genetic traits of prostate cancer cells may be selected or altered through an "adaptive" mechanism that involves cellular interaction with the bone stromal cells.
Mutational inactivation of the gene WRN causes Werner syndrome, an autosomal recessive disease characterized by premature aging, elevated genomic instability and increased cancer incidence. The capacity of enforced telomerase expression to rescue premature senescence of cultured cells from individuals with Werner syndrome and the lack of a disease phenotype in Wrn-deficient mice with long telomeres implicate telomere attrition in the pathogenesis of Werner syndrome. Here, we show that the varied and complex cellular phenotypes of Werner syndrome are precipitated by exhaustion of telomere reserves in mice. In late-generation mice null with respect to both Wrn and Terc (encoding the telomerase RNA component), telomere dysfunction elicits a classical Werner-like premature aging syndrome typified by premature death, hair graying, alopecia, osteoporosis, type II diabetes and cataracts. This mouse model also showed accelerated replicative senescence and accumulation of DNA-damage foci in cultured cells, as well as increased chromosomal instability and cancer, particularly nonepithelial malignancies typical of Werner syndrome. These genetic data indicate that the delayed manifestation of the complex pleiotropic of Wrn deficiency relates to telomere shortening.
We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional (3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedly during eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with the absence of condensin II subunits. Moreover, condensin II depletion converts the architecture of the human genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state, centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physical model in which lengthwise compaction of chromosomes by condensin II during mitosis determines chromosome-scale genome architecture, with effects that are retained during the subsequent interphase. This mechanism likely has been conserved since the last common ancestor of all eukaryotes.
ARCaP uniquely models the molecular basis of prostate cancer bone and adrenal metastases and epithelial to mesenchymal transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.