Abstract:The Altyn Tagh Fault (ATF) is one of the major left-lateral strike-slip faults in the northeastern area of the Tibetan Plateau. In this study, the interseismic deformation across the ATF at 85˝E was measured using 216 interferograms from 33 ENVISAT advanced synthetic aperture radar images on a descending track acquired from 2003 to 2010, and 66 interferograms from 15 advanced synthetic aperture radar images on an ascending track acquired from 2005 to 2010. To retrieve the pattern of interseismic strain accumulation, a global atmospheric model (ERA-Interim) provided by the European Center for Medium Range Weather Forecast and a global network orbital correction approach were applied to remove atmospheric effects and the long-wavelength orbital errors in the interferograms. Then, the interferometric synthetic aperture radar (InSAR) time series with atmospheric estimation model was used to obtain a deformation rate map for the ATF. Based on the InSAR velocity map, the regional strain rates field was calculated for the first time using the multi-scale wavelet method. The strain accumulation is strongly focused on the ATF with the maximum strain rate of 12.4ˆ10´8/year. We also show that high-resolution 2-D strain rates field can be calculated from InSAR alone, even without GPS data. Using a simple half-space elastic screw dislocation model, the slip-rate and locking depth were estimated with both ascending and descending surface velocity measurements. The joint inversion results are consistent with a left-lateral slip rate of 8.0˘0.7 mm/year on the ATF and a locking depth of 14.5˘3 km, which is in agreement with previous results from GPS surveys and ERS InSAR results. Our results support the dynamic models of Asian deformation requiring low fault slip rate.
Summary
Site velocities derived from repeated measurements in a regional GPS network in Southeast Asia help to constrain the motion of tectonic blocks as well as slip rates along major faults in the area. Using 3‐D forward dislocation modelling, the influence of seismic elastic loading and unloading on the measured site motions are approximated. Results suggest that the northwestern Sunda arc is fully coupled seismogenically, whereas its eastern part along Java shows localized deformation. Higher horizontal velocity gradients than expected from the modelling of a fully coupled plate interface west of Manila in the Philippines suggest that deformation may be localized there. Assuming that geodetically derived convergence represents long‐term rates, accumulated geodetic moments are compared to those derived using seismic data from 1977 to 2000 (Harvard CMT catalogue). If areas displaying localized deformation are dominated by creep processes, the largest difference between accumulated and seismically released deformation is located where the 2000 June 4 Mw = 7.8 Sumatra earthquake occurred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.