Injectable, self-healable, and pH-responsive hybrid hydrogels are highly promising biomaterials for controlled and long-term therapeutic agent release in cancer treatment. Herein, we fabricated an injectable, self-healable, and pH-responsive hybrid hydrogel through the formation of the hydrazone bond between hydrazide-functionalized gelatin (Gel-ADH) and aldehyde-functionalized PEG (diBA-PEG) polymers. During gelation, the resulting pregels were also integrated with laponite (LAP) nanodisks loaded with an anticancer drug, doxorubicin (DOX), yielding to hybrid Gel-ADH/diBA-PEG/LAP@DOX hydrogels. The gelation time of the hybrid hydrogel was observed to be 80 s and the resulting hybrid hydrogels demonstrated excellent injectability and rapid self-healing capability. The gel−sol transition behaviors of hybrid hydrogels indicated an outstanding gelation stability, which is a highly desirable feature in controlled drug delivery application. The injectable hybrid Gel-ADH/diBA-PEG/LAP@DOX hydrogels exhibited a very efficient pHdependent long-term drug release profile. Biocompatibility of the hydrogel components (Gel-ADH, diBA-PEG, and LAP) was also tested using the human breast cell line (SVCT) and endothelial cell line (HUVEC). All components of the hybrid hydrogel possess excellent biocompatibility and even support cell proliferation. Moreover, the cytotoxicity of the hydrogels was investigated on the human breast cancer cell line (MCF-7) and triple-negative breast cancer cell line (MDA-MB-231). Our results clearly suggested that this injectable, self-healable, and pH-responsive hybrid Gel-ADH/diBA-PEG/LAP@DOX hydrogel offers a promising potential as a drug carrier for long-term and controlled release application.
Additive manufacturing is growing in the area of dentistry and orthopedics due to the potential for the fabrication of individual implants. In this study, fused deposition modeling which is the most popular method was used to produce 3D scaffolds having a grid pattern from the polyurethane (PU) filament. Then, this scaffold was coated with boric acid (BA) with the thermionic vacuum arc technique. The microstructure analysis showed the macro-pores having a dimension of ~ 0.16 mm2. The BA coating increased the roughness in adverse decreased the wettability. The presence of BA on the scaffold before and after cell culture was confirmed by FESEM-EDS and ATR-FTIR. The Cell proliferation and osteogenic differentiation capacity of dental pulp stem cells (DPSCs) on uncoated and coated printed 3D PU scaffolds were also investigated. On the third day, cell viability was found to be higher (1.3-fold) in the groups containing BA. However, on the seventh day, the increase in cell proliferation in the PU+BA group was found to be less than in the other groups. According to Ca deposition analysis and Alizarin Red staining, PU+BA increased the calcium accumulation in the cells in both osteogenic induced and non-induced conditions at day-14. According to gene expression analysis, the Runx2 expression was not detected in PU+BA groups with and without differentiation medium (p ≤0.05). The expression of OCN was persistently increased up to 21-fold and 48-fold in PU and PU+BA in osteogenic differentiation medium group after 14 days compared to control group (p ≤0.05). DSPP expression was observed only in PU+BA in osteogenic differentiation medium group. In line with the results that we have obtained, our 3D printed synthesized scaffolds have properties to trigger the differentiation of DPSCs cells in terms of osteogenicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.