Silver nanoparticles (AgNPs) are microbicidal agents which could be potentially used as an alternative to antivirals to treat human infectious diseases, especially influenza virus infections where antivirals have generally proven unsuccessful. However, concerns about the use of AgNPs on humans arise from their potential toxicity, although mechanisms are not well-understood. We show here, in the context of an influenza virus infection of lung epithelial cells, that AgNPs down-regulated influenza induced CCL-5 and -IFN-β release (two cytokines important in antiviral immunity) through RIG-I inhibition, while enhancing IL-8 production, a cytokine important for mobilizing host antibacterial responses. AgNPs activity was independent of coating and was not observed with gold nanoparticles. Down-stream analysis indicated that AgNPs disorganized the mitochondrial network and prevented the antiviral IRF-7 transcription factor influx into the nucleus. Importantly, we showed that the modulation of RIG-I-IRF-7 pathway was concomitant with inhibition of either classical or alternative autophagy (ATG-5- and Rab-9 dependent, respectively), depending on the epithelial cell type used. Altogether, this demonstration of a AgNPs-mediated functional dichotomy (down-regulation of IFN-dependent antiviral responses and up-regulation of IL-8-dependent antibacterial responses) may have practical implications for their use in the clinic.
The complexation of protactinium(V) by oxalate was studied by X-ray absorption spectroscopy (XAS), density functional theory (DFT) calculations, capillary electrophoresis coupled with inductively coupled plasma mass spectrometry (CE-ICP-MS) and solvent extraction. XAS measurements showed unambiguously the presence of a short single oxo-bond, and the deduced structure agrees with theoretical calculations. CE-ICP-MS results indicated the formation of a highly charged anionic complex. The formation constants of PaO(C(2)O(4))(+), PaO(C(2)O(4))(2)(-), and PaO(C(2)O(4))(3)(3-) were determined from solvent extraction data by using protactinium at tracer scale (C(Pa) < 10(-10) M). Complexation reactions of Pa(V) with oxalate were found to be exothermic with relatively high positive entropic variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.