Companies must retain their customers and maintain long-term relationships in industries with intense competition. Customer churn analysis is defined in the literature as identifying customers who may leave a company to take appropriate marketing precautions. While customer churn research is prevalent in B2C (Business to Customer) business models such as the telecoms and retail sectors, customer churn analysis in B2B (business to business) models is a relatively emerging topic. In this regard, the study carried out a customer churn analysis by considering an ERP (enterprise resource planning) company with a software as a service (SaaS) business model. Different machine learning algorithms analyzed ten features determined by selection methods and expert opinions. According to the analysis results, the random forest algorithm gave the best result. Additionally, it has been observed that the number of products and customer features has a relatively higher weight for the prediction of churner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.