Word embedding vectorization is more efficient than Bag-of-Word in word vector size. Word embedding also overcomes the loss of information related to sentence context, word order, and semantic relationships between words in sentences. Several kinds of Word Embedding are often considered for sentiment analysis, such as Word2Vec and FastText. Fast Text works on N-Gram, while Word2Vec is based on the word. This research aims to compare the accuracy of the sentiment analysis model using Word2Vec and FastText. Both models are tested in the sentiment analysis of Indonesian hotel reviews using the dataset from TripAdvisor.Word2Vec and FastText use the Skip-gram model. Both methods use the same parameters: number of features, minimum word count, number of parallel threads, and the context window size. Those vectorizers are combined by ensemble learning: Random Forest, Extra Tree, and AdaBoost. The Decision Tree is used as a baseline for measuring the performance of both models. The results showed that both FastText and Word2Vec well-to-do increase accuracy on Random Forest and Extra Tree. FastText reached higher accuracy than Word2Vec when using Extra Tree and Random Forest as classifiers. FastText leverage accuracy 8% (baseline: Decision Tree 85%), it is proofed by the accuracy of 93%, with 100 estimators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.