Tissue regeneration requires 3-dimensional (3D) smart materials as scaffolds to promote transport of nutrients. To mimic mechanical properties of extracellular matrices, biocompatible polymers have been widely studied and a diverse range of 3D scaffolds have been produced. We propose the use of responsive polymeric materials to create dynamic substrates for cell culture, which goes beyond designing only a physical static 3D scaffold. Here, we demonstrated that lactone- and lactide-based star block-copolymers (SBCs), where a liquid crystal (LC) moiety has been attached as a side-group, can be crosslinked to obtain Liquid Crystal Elastomers (LCEs) with a porous architecture using a salt-leaching method to promote cell infiltration. The obtained SmA LCE-based fully interconnected-porous foams exhibit a Young modulus of 0.23 ± 0.07 MPa and a biodegradability rate of around 20% after 15 weeks both of which are optimized to mimic native environments. We present cell culture results showing growth and proliferation of neurons on the scaffold after four weeks. This research provides a new platform to analyse LCE scaffold-cell interactions where the presence of liquid crystal moieties promotes cell alignment paving the way for a stimulated brain-like tissue.
3D liquid crystal elastomer (3D‐LCE) foams are used to support long‐term neuronal cultures for over 60 days. Sequential imaging shows that cell density remains relatively constant throughout the culture period while the number of cells per observational area increases. In a subset of samples, retinoic acid is used to stimulate extensive neuritic outgrowth and maturation of proliferated neurons within the LCEs, inducing a threefold increase in length with cells displaying morphologies indicative of mature neurons. Designed LCEs' micro‐channels have a similar diameter to endogenous parenchymal arterioles, ensuring that neurons throughout the construct have constant access to growth media during extended experiments. Here it is shown that 3D‐LCEs provide a unique environment and simple method to longitudinally study spatial neuronal function, not possible in conventional culture environments, with simplistic integration into existing methodological pipelines.
The development of appropriate materials that can make breakthroughs in tissue engineering has long been pursued by the scientific community. Several types of material have been long tested and re-designed for this purpose. At the same time, liquid crystals (LCs) have captivated the scientific community since their discovery in 1888 and soon after were thought to be, in combination with polymers, artificial muscles. Within the past decade liquid crystal elastomers (LCE) have been attracting increasing interest for their use as smart advanced materials for biological applications. Here, we examine how LCEs can potentially be used as dynamic substrates for culturing cells, moving away from the classical two-dimensional cell-culture nature. We also briefly discuss the integration of a few technologies for the preparation of more sophisticated LCE-composite scaffolds for more dynamic biomaterials. The anisotropic properties of LCEs can be used not only to promote cell attachment and the proliferation of cells, but also to promote cell alignment under LCE-stimulated deformation. 3D LCEs are ideal materials for new insights to simulate and study the development of tissues and the complex interplay between cells.
Composites based on ε-caprolactone-d,l-lactide-based elastomer with cellulose nanocrystals (CNC) are investigated to understand how matching cells with appropriate mechanical environments can provide important insights into fundamental cell behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.