Sentiment analysis, one of the research hotspots in the natural language processing field, has attracted the attention of researchers, and research papers on the field are increasingly published. Many literature reviews on sentiment analysis involving techniques, methods, and applications have been produced using different survey methodologies and tools, but there has not been a survey dedicated to the evolution of research methods and topics of sentiment analysis. There have also been few survey works leveraging keyword cooccurrence on sentiment analysis. Therefore, this study presents a survey of sentiment analysis focusing on the evolution of research methods and topics. It incorporates keyword co-occurrence analysis with a community detection algorithm. This survey not only compares and analyzes the connections between research methods and topics over the past two decades but also uncovers the hotspots and trends over time, thus providing guidance for researchers. Furthermore, this paper presents broad practical insights into the methods and topics of sentiment analysis, while also identifying technical directions, limitations, and future work.
Social media represent a rich source of information, such as critiques, feedback, and other opinions posted online by Internet users. Such information is typically a good reflection of users’ sentiments and attitudes towards various services, topics, or products. Sentiment analysis has become an increasingly important natural language processing (NLP) task to help users make sense of what is happening in the Internet blogosphere and it can be useful for companies as well as public organizations. However, most existing sentiment analysis techniques are only able to analyze data at the aggregate level, merely providing a binary classification (positive vs. negative), and are not able to generate finer characterizations of sentiments as well as emotions involved. This paper describes a new opinion analysis scheme, i.e., a multi-level fine-scaled sentiment sensing with ambivalence handling. The ambivalence handler is presented in detail along with the strength-level tune parameters for analyzing the strength and the fine-scale of both positive or negative sentiments. It is capable of drilling deeper into text in order to reveal multi-level fine-scaled sentiments as well as different types of emotions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.