Background
The Raynaud-Claes type of X-linked syndromic mental retardation (MRXSRC) is a very rare condition, by intellectual disability ranged from borderline to profound, impaired language development, brain abnormalities, facial dysmorphisms and seizures. MRXSRC is caused by variants in CLCN4 which encodes the 2Cl−/H+ exchanger ClC-4 prominently expressed in brain.
Case presentation
We present a 3-year-old Chinese girl with intellectual disability, dysmorphic features, brain abnormalities, significant language impairment and autistic features. Brain magnetic resonance imaging (MRI) showed a thin corpus callosum, a mega cisterna magna and ventriculomegaly. Whole exome sequencing (WES) was performed to detect the molecular basis of the disease. It was confirmed that this girl carried a novel heterozygous missense variant (c.1343C > T, p.Ala448Val) of CLCN4 gene, inherited from her mother. This variant has not been registered in public databases and was predicted to be pathogenic by multiple in silico prediction tools.
Conclusion
Our investigation expands the phenotype spectrum for CLCN4 variants with syndromic X-linked intellectual disability, which help to improve the understanding of CLCN4-related intellectual disability and will help in genetic counselling for this family.
BackgroundSpastic paraplegia type 54 (SPG54) is a rare inherited autosomal recessive disorder, and a complex hereditary spastic paraplegia (HSP) caused by mutations in the phospholipase DDHD2 gene. SPG54 is characterized by early onset of spastic paraplegia, intellectual disability and dysplasia of corpus callosum.Case presentationWe report a 9 years and 5 months old Chinese girl with progressive spasm of the lower limbs, muscle weakness and intellectual disability. Brain magnetic resonance imaging (MRI) showed periventricular leukomalacia and thinning of the corpus callosum. According to the Wechsler Intelligence Scale, her IQ is 42. By whole exome sequencing, novel compound heterozygous missense mutations in the DDHD2 gene [c.168G>C, p.(Trp56Cys) and c.1505T>C, p.(Phe502Ser)] were identified in the proband. Comparative amino acid sequence alignment across different species revealed that Trp56 and Phe502 in the DDHD2 protein were highly conserved during evolution. And multiple in silico prediction tools suggested that both mutations were deleterious.ConclusionsOur study reports a very rare case of complicated HSP caused by two novel compound heterozygous mutations in the DDHD2 gene. Our findings expand the genetic spectrum of SPG54.
Background
Interstitial deletions of chromosome band 10q11-q22 was a genomic disorder distinguished by developmental delay, congenital cleft palate and muscular hypotonia. The phenotypes involved were heterogeneous, hinge on the variable breakpoints and size.
Case presentation
Here, we presented a patient with soft palate cleft, growth and development delay. The patient was a 2 years and 5 months girl who was not able to walk unless using a children’s crutches to support herself. Whole-exome sequencing (WES) and whole-genome mate-pair sequencing (WGMS) were both performed by next generation sequencing (NGS). A 20.76 Mb deletion at 10q11.23q22.1 (seq[GRCh37/hg19]del(10)(50,319,387-71,083,899) × 1) was revealed by the WGMS, which was verified as de novo by quantitative polymerase chain reaction (QPCR).
Conclusion
Children with 10q11-q22 deletions greater than 20 MB have never been reported before, and we are the first to report and provide a detailed clinical phenotype, which brings further knowledge of 10q11-q22 deletions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.