BackgroundPrevious studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa).MethodsIn this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations.ResultsWe found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3′- untranslated region (3′- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone.ConclusionThese data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics.Electronic supplementary materialThe online version of this article (10.1186/s13046-018-0895-z) contains supplementary material, which is available to authorized users.
ObjectiveTo explore the performance of a protocol combining fecal immunochemical test (FIT) and a high-risk factor questionnaire (HRFQ) for selecting patients requiring colonoscopy as part of a population-based colorectal cancer (CRC) screening program in China.MethodsFrom 2015 to 2016, we conducted a CRC screening program for all residents aged 45 years or older in Tianhe District, Guangzhou City, China. Participants underwent an FIT and received an HRFQ as part of primary screening. Those with positive FIT and/or HRFQ results were considered to be at high risk and were recommended to undergo colonoscopy.ResultsA total of 10 074 subjects were recruited and enrolled in the screening program. In the enrolled population, 17.5% had positive FIT results and 19.4% had positive HRFQ results. Of those recommended to undergo diagnostic colonoscopy, 773 did so. The screening method’s overall positive predictive value (PPV) was 4.9% for non-adenomatous polyps, 11.4% for low-risk adenomas (LRAs), 15.9% for high-risk adenomas (HRAs) and 1.6% for CRC. The PPVs of positive FIT results for non-adenomatous polyps, LRAs, HRAs and CRC were 5.2%, 15.9%, 22.5% and 2.5%, respectively. The PPVs of positive HRFQ results for non-adenomatous polyps, LRA, HRA and CRC were 4.1%, 10.2%, 14.3% and 1.4%, respectively. The PPVs associated with combined positive FIT and HRFQ results for non-adenomatous polyps, LRAs, HRAs and CRC were 4.5%, 16.4%, 23.7% and 2.8%, respectively.ConclusionOur results suggest that this two-step CRC screening strategy, involving a combination of FIT and HRFQ followed by colonoscopy, is useful to identify early-stage CRC. The high detection rates and PPVs for CRC and adenomas encourage this strategy’s use in ongoing screening programs.
Recent studies have shown that miRNAs have potent abilities to activate gene expression by targeting promoter elements, a phenomenon known as RNA activation (RNAa). In the present study, we identified a new endogenous miR-3619-5p which was decreased in prostate cancer tissues and cells compared to corresponding normal controls. Moreover, overexpression of miR-3619-5p readily induced CDKN1A gene expression by directly targeting the putative site in the promoter. Besides, miR-3619-5p possessed considerable capacity to inhibit prostate cancer DU145 and PC3 cell growth, and downregulate several CDKN1A downstream genes, such as cyclin D1, CDK4 and CDK6. Notably, this antitumor function of miR-3619-5p was mainly achieved by stimulating CDKN1A expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.