We present the first synthesis and characterization of a 1,3-dihydro-1,3-azaborine, a long-sought BN isostere of benzene. 1,3-Dihydro-1,3-azaborine is a stable structural motif with considerable aromatic character as evidenced by structural analysis and its reaction chemistry. Single crystal X-ray analysis indicates bonding consistent with significant electron delocalization. 1,3-Dihydro-1,3-azaborines also undergo nucleophilic substitutions at boron and electrophilic aromatic substitution reactions. In view of the versatility and impact of aromatic compounds in the biomedical field and in materials science, the present study further expands the available chemical space of arenes via BN/CC isosterism.
We present a comprehensive electronic structure analysis of structurally simple BN heterocycles using a combined UV-photoelectron spectroscopy (UV-PES) / computational chemistry approach. Gas-phase He I photoelectron spectra of 1,2-dihydro-1,2-azaborine 1, N-Me-1,2-BN-toluene 2, and N-Me-1,3-BN-toluene 3 have been recorded, assessed by density functional theory calculations, and compared with their corresponding carbonaceous analogues benzene and toluene. The first ionization energies of these BN heterocycles are in the order N-Me-1,3-BN-toluene 3 (8.0 eV) < N-Me-1,2-BN-toluene 2 (8.45 eV) < 1,2-dihydro-1,2-azaborine 1 (8.6 eV) < toluene (8.83 eV) < benzene (9.25 eV). The computationally determined molecular dipole moments are in the order 3 (4.577 Debye) > 2 (2.209 Debye) > 1 (2.154 Debye) > toluene (0.349 Debye) > benzene (0 Debye) and are consistent with experimental observations. The λmax in the UV-Vis absorption spectra are in the order 3 (297 nm) > 2 (278 nm) > 1 (269 nm) > toluene (262 nm) > benzene (255 nm). We also establish that the measured anodic peak potentials and electrophilic aromatic substitution (EAS) reactivity of BN heterocycles 1–3 are consistent with the electronic structure description determined by the combined UV-PES/computational chemistry approach.
Optically active organoboronic acids and their derivatives are an important family of target compounds in organic chemistry, catalysis, and medicinal chemistry. Yet there are rare asymmetric catalytic examples reported for the synthesis of these compounds via atom and step economic ways. Herein, we report a chelate-directed iridium-catalyzed asymmetric C(sp 2 )−H borylation of aromatic C−H bonds directed by free amine groups. The success of these transformations relies on a novel family of chiral bidentate boryl ligands (L). They can be synthesized straightforwardly in three steps starting from readily available (S,S)-1,2diphenyl-1,2-ethanediamie ((S,S)-DPEN). The Ir-catalyzed C(sp 2 )−H borylation comprises two parts. The first part is desymmetrization of prochiral diarylmethylamines. In the presence of L3/Ir, a vast array of corresponding borylated products were obtained with high regioselectivity and good to excellent enantioselectivities (26 examples, up to 96% ee). The second part, kinetic resolution of racemic diarylmethylamines, was also conducted. Good selectivity values (up to 68%, 11 examples) were obtained when L8 was used. We also demonstrated the synthetic utility of the current method on gram-scale reaction for several transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.