At present, the therapeutic treatment strategies for patients with hepatocellular carcinoma (HCC) remain unsatisfactory, and novel methods are urgently required to treat this disease. Members of the B cell lymphoma (Bcl)-2 family are anti-apoptotic proteins, which are commonly expressed at high levels in certain HCC tissues and positively correlate with the treatment resistance of patients with HCC. ABT-737, an inhibitor of Bcl-2 anti-apoptotic proteins, has been demonstrated to exhibit potent antitumor effects in several types of tumor, including HCC. However, treatment with ABT-737 alone also activates certain pro-survival signaling pathways, which attenuate the antitumor validity of ABT-737. Curcumin, which is obtained from Curcuma longa, is also an antitumor potentiator in multiple types of cancer. In the present study, the synergistic effect of curcumin and ABT-737 on HCC cells was investigated for the first time, to the best of our knowledge. It was found that curcumin markedly enhanced the antitumor effects of ABT-737 on HepG2 cells, which was partially dependent on the induction of apoptosis, according to western blot analysis and flow cytometric apoptosis analysis. In addition, the sustained activation of the ROS-ASK1-c-Jun N-terminal kinase pathway may be an important mediator of the synergistic effect of curcumin and ABT-737. Collectively, these results indicated that the combination of curcumin and ABT-737 can efficaciously induce the death of HCC cells, and may offer a potential treatment strategy for patients with HCC.
A time-dependent multiconfiguration self-consistent field (TDMCSCF) scheme is developed to describe the time-resolved electron dynamics of a laser-driven many-electron atomic or molecular system, starting directly from the time-dependent Schrodinger equation for the system. This nonvariational formulation aims at the full exploitations of concepts, tools, and facilities of existing, well-developed quantum chemical MCSCF codes. The theory uses, in particular, a unitary representation of time-dependent configuration mixings and orbital transformations. Within a short-time, or adiabatic approximation, the TDMCSCF scheme amounts to a second-order split-operator algorithm involving generically the two noncommuting one-electron and two-electron parts of the time-dependent electronic Hamiltonian. We implement the scheme to calculate the laser-induced dynamics of the two-electron H2 molecule described within a minimal basis, and show how electron correlation is affected by the interaction of the molecule with a strong laser field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.